

Welcome to the Cabal User Guide

	1. Introduction
	1.1. A tool for working with packages

	1.2. What’s in a package

	1.3. Cabal featureset

	1.4. Similar systems

	2. Configuration and Installing Packages
	2.1. Configuration

	2.2. Building and installing packages

	3. Package Concepts and Development
	3.1. Quickstart

	3.2. Package concepts

	3.3. Developing packages

	4. Reporting Bugs and Stability of Cabal Interfaces
	4.1. Reporting bugs and deficiencies

	4.2. Stability of Cabal interfaces

	5. Nix-style Local Builds
	5.1. Quickstart

	5.2. Cookbook

	5.3. How it works

	5.4. Commands

	5.5. Configuring builds with cabal.project

	6. Nix Integration
	6.1. Enabling Nix Integration

	6.2. Creating Nix Expressions

	6.3. Nix Expression Evaluation

	6.4. Further Reading

	7. Package Description Format Specification History
	7.1. cabal-version: 3.0

	7.2. cabal-version: 2.4

	7.3. cabal-version: 2.2

	7.4. cabal-version: 2.0

	7.5. cabal-version: 1.24

	7.6. cabal-version: 1.22

	7.7. cabal-version: 1.20

	7.8. cabal-version: 1.18

	7.9. cabal-version: 1.16

	7.10. cabal-version: 1.12

 Cabal is the standard package system for
Haskell [http://www.haskell.org/] software. It helps people to
configure, build and install Haskell software and to distribute it
easily to other users and developers.

There is a command line tool called cabal for working with Cabal
packages. It helps with installing existing packages and also helps
people developing their own packages. It can be used to work with local
packages or to install packages from online package archives, including
automatically installing dependencies. By default it is configured to
use Hackage [http://hackage.haskell.org/] which is Haskell’s central
package archive that contains thousands of libraries and applications in
the Cabal package format.

1. Introduction

Cabal is a package system for Haskell software. The point of a package
system is to enable software developers and users to easily distribute,
use and reuse software. A package system makes it easier for developers
to get their software into the hands of users. Equally importantly, it
makes it easier for software developers to be able to reuse software
components written by other developers.

Packaging systems deal with packages and with Cabal we call them Cabal
packages. The Cabal package is the unit of distribution. Every Cabal
package has a name and a version number which are used to identify the
package, e.g. filepath-1.0.

Cabal packages can depend on other Cabal packages. There are tools to
enable automated package management. This means it is possible for
developers and users to install a package plus all of the other Cabal
packages that it depends on. It also means that it is practical to make
very modular systems using lots of packages that reuse code written by
many developers.

Cabal packages are source based and are typically (but not necessarily)
portable to many platforms and Haskell implementations. The Cabal
package format is designed to make it possible to translate into other
formats, including binary packages for various systems.

When distributed, Cabal packages use the standard compressed tarball
format, with the file extension .tar.gz, e.g.
filepath-1.0.tar.gz.

Note that packages are not part of the Haskell language, rather they are
a feature provided by the combination of Cabal and GHC (and several
other Haskell implementations).

1.1. A tool for working with packages

There is a command line tool, called “cabal”, that users and
developers can use to build and install Cabal packages. It can be used
for both local packages and for packages available remotely over the
network. It can automatically install Cabal packages plus any other
Cabal packages they depend on.

Developers can use the tool with packages in local directories, e.g.

$ cd foo/
$ cabal install

While working on a package in a local directory, developers can run the
individual steps to configure and build, and also generate documentation
and run test suites and benchmarks.

It is also possible to install several local packages at once, e.g.

$ cabal install foo/ bar/

Developers and users can use the tool to install packages from remote
Cabal package archives. By default, the cabal tool is configured to
use the central Haskell package archive called
Hackage [http://hackage.haskell.org/] but it is possible to use it
with any other suitable archive.

$ cabal install xmonad

This will install the xmonad package plus all of its dependencies.

In addition to packages that have been published in an archive,
developers can install packages from local or remote tarball files, for
example

$ cabal install foo-1.0.tar.gz
$ cabal install http://example.com/foo-1.0.tar.gz

Cabal provides a number of ways for a user to customise how and where a
package is installed. They can decide where a package will be installed,
which Haskell implementation to use and whether to build optimised code
or build with the ability to profile code. It is not expected that users
will have to modify any of the information in the .cabal file.

For full details, see the section on building and installing
packages.

Note that cabal is not the only tool for working with Cabal
packages. Due to the standardised format and a library for reading
.cabal files, there are several other special-purpose tools.

1.2. What’s in a package

A Cabal package consists of:

	Haskell software, including libraries, executables and tests

	metadata about the package in a standard human and machine readable
format (the “.cabal” file)

	a standard interface to build the package (the “Setup.hs” file)

The .cabal file contains information about the package, supplied by
the package author. In particular it lists the other Cabal packages that
the package depends on.

For full details on what goes in the .cabal and Setup.hs files,
and for all the other features provided by the build system, see the
section on developing packages.

1.3. Cabal featureset

Cabal and its associated tools and websites covers:

	a software build system

	software configuration

	packaging for distribution

	automated package management

	natively using the cabal command line tool; or

	by translation into native package formats such as RPM or deb

	web and local Cabal package archives

	central Hackage website with 1000’s of Cabal packages

Some parts of the system can be used without others. In particular the
built-in build system for simple packages is optional: it is possible to
use custom build systems.

1.4. Similar systems

The Cabal system is roughly comparable with the system of Python Eggs,
Ruby Gems or Perl distributions. Each system has a notion of
distributable packages, and has tools to manage the process of
distributing and installing packages.

Hackage is an online archive of Cabal packages. It is roughly comparable
to CPAN but with rather fewer packages (around 5,000 vs 28,000).

Cabal is often compared with autoconf and automake and there is some
overlap in functionality. The most obvious similarity is that the
command line interface for actually configuring and building packages
follows the same steps and has many of the same configuration
parameters.

$./configure --prefix=...
$ make
$ make install

compared to

$ cabal configure --prefix=...
$ cabal build
$ cabal install

Cabal’s build system for simple packages is considerably less flexible
than make/automake, but has builtin knowledge of how to build Haskell
code and requires very little manual configuration. Cabal’s simple build
system is also portable to Windows, without needing a Unix-like
environment such as cygwin/mingwin.

Compared to autoconf, Cabal takes a somewhat different approach to
package configuration. Cabal’s approach is designed for automated
package management. Instead of having a configure script that tests for
whether dependencies are available, Cabal packages specify their
dependencies. There is some scope for optional and conditional
dependencies. By having package authors specify dependencies it makes it
possible for tools to install a package and all of its dependencies
automatically. It also makes it possible to translate (in a
mostly-automatically way) into another package format like RPM or deb
which also have automatic dependency resolution.

2. Configuration and Installing Packages

	2.1. Configuration
	2.1.1. Overview

	2.1.2. Repository specification
	2.1.2.1. Using secure repositories

	2.1.2.2. Local no-index repositories

	2.1.2.3. Legacy repositories

	2.1.2.4. Secure local repositories

	2.2. Building and installing packages
	2.2.1. Building and installing a system package

	2.2.2. Building and installing a user package

	2.2.3. Installing packages from Hackage

	2.2.4. Developing with sandboxes
	2.2.4.1. Sandboxes: basic usage

	2.2.4.2. Sandboxes: advanced usage

	2.2.5. Creating a binary package

	2.2.6. setup configure
	2.2.6.1. Programs used for building

	2.2.6.2. Installation paths
	2.2.6.2.1. Path variables in the simple build system

	2.2.6.2.2. Paths in the simple build system

	2.2.6.2.3. Prefix-independence

	2.2.6.3. Controlling Flag Assignments

	2.2.6.4. Building Test Suites

	2.2.6.5. Miscellaneous options

	2.2.7. setup build

	2.2.8. setup haddock

	2.2.9. setup hscolour

	2.2.10. setup install

	2.2.11. setup copy

	2.2.12. setup register

	2.2.13. setup unregister

	2.2.14. setup clean

	2.2.15. setup test

	2.2.16. setup bench

	2.2.17. setup sdist

2.1. Configuration

2.1.1. Overview

The global configuration file for cabal-install is
~/.cabal/config. If you do not have this file, cabal will create
it for you on the first call to cabal update. Alternatively, you can
explicitly ask cabal to create it for you using

$ cabal user-config update

You can change the location of the global configuration file by specifying
either --config-file=FILE on the command line or by setting the
CABAL_CONFIG environment variable.

Most of the options in this configuration file are also available as
command line arguments, and the corresponding documentation can be used
to lookup their meaning. The created configuration file only specifies
values for a handful of options. Most options are left at their default
value, which it documents; for instance,

-- executable-stripping: True

means that the configuration file currently does not specify a value for
the executable-stripping option (the line is commented out), and
that the default is True; if you wanted to disable stripping of
executables by default, you would change this line to

executable-stripping: False

You can also use cabal user-config update to migrate configuration
files created by older versions of cabal.

2.1.2. Repository specification

An important part of the configuration is the specification of the
repository. When cabal creates a default config file, it configures
the repository to be the central Hackage server:

repository hackage.haskell.org
 url: http://hackage.haskell.org/

The name of the repository is given on the first line, and can be
anything; packages downloaded from this repository will be cached under
~/.cabal/packages/hackage.haskell.org (or whatever name you specify;
you can change the prefix by changing the value of
remote-repo-cache). If you want, you can configure multiple
repositories, and cabal will combine them and be able to download
packages from any of them.

2.1.2.1. Using secure repositories

For repositories that support the TUF security infrastructure (this
includes Hackage), you can enable secure access to the repository by
specifying:

repository hackage.haskell.org
 url: http://hackage.haskell.org/
 secure: True
 root-keys: <root-key-IDs>
 key-threshold: <key-threshold>

The <root-key-IDs> and <key-threshold> values are used for
bootstrapping. As part of the TUF infrastructure the repository will
contain a file root.json (for instance,
http://hackage.haskell.org/root.json) which the client needs to do
verification. However, how can cabal verify the root.json file
itself? This is known as bootstrapping: if you specify a list of root
key IDs and a corresponding threshold, cabal will verify that the
downloaded root.json file has been signed with at least
<key-threshold> keys from your set of <root-key-IDs>.

You can, but are not recommended to, omit these two fields. In that case
cabal will download the root.json field and use it without
verification. Although this bootstrapping step is then unsafe, all
subsequent access is secure (provided that the downloaded root.json
was not tampered with). Of course, adding root-keys and
key-threshold to your repository specification only shifts the
problem, because now you somehow need to make sure that the key IDs you
received were the right ones. How that is done is however outside the
scope of cabal proper.

More information about the security infrastructure can be found at
https://github.com/haskell/hackage-security.

2.1.2.2. Local no-index repositories

It’s possible to use a directory of .tar.gz package files as a local package
repository.

repository my-local-repository
 url: file+noindex:///absolute/path/to/directory

cabal will construct the index automatically from the
package-name-version.tar.gz files in the directory, and will use optional
corresponding package-name-version.cabal files as new revisions.

The index is cached inside the given directory. If the directory is not
writable, you can append #shared-cache fragment to the URI,
then the cache will be stored inside the remote-repo-cache directory.
The part of the path will be used to determine the cache key part.

Note

The URI scheme file: is interpreted as a remote repository,
as described in the previous sections, thus requiring manual construction
of 01-index.tar file.

2.1.2.3. Legacy repositories

Currently cabal supports two kinds of “legacy” repositories. The
first is specified using

remote-repo: hackage.haskell.org:http://hackage.haskell.org/packages/archive

This is just syntactic sugar for

repository hackage.haskell.org
 url: hackage.haskell.org:http://hackage.haskell.org/packages/archive

although, in (and only in) the specific case of Hackage, the URL
http://hackage.haskell.org/packages/archive will be silently
translated to http://hackage.haskell.org/.

The second kind of legacy repositories are so-called “(legacy) local”
repositories:

local-repo: my-local-repo:/path/to/local/repo

This can be used to access repositories on the local file system.
However, the layout of these local repositories is different from the
layout of remote repositories, and usage of these local repositories is
deprecated.

2.1.2.4. Secure local repositories

If you want to use repositories on your local file system, it is
recommended instead to use a secure local repository:

repository my-local-repo
 url: file:/path/to/local/repo
 secure: True
 root-keys: <root-key-IDs>
 key-threshold: <key-threshold>

The layout of these secure local repos matches the layout of remote
repositories exactly; the hackage-repo-tool [http://hackage.haskell.org/package/hackage-repo-tool]
can be used to create and manage such repositories.

2.2. Building and installing packages

After you’ve unpacked a Cabal package, you can build it by moving into
the root directory of the package and running the cabal tool there:

$ cabal [command] [option...]

The command argument selects a particular step in the build/install
process.

You can also get a summary of the command syntax with

$ cabal help

Alternatively, you can also use the Setup.hs or Setup.lhs
script:

$ runhaskell Setup.hs [command] [option...]

For the summary of the command syntax, run:

$ cabal help

or

$ runhaskell Setup.hs --help

2.2.1. Building and installing a system package

$ runhaskell Setup.hs configure --ghc
$ runhaskell Setup.hs build
$ runhaskell Setup.hs install

The first line readies the system to build the tool using GHC; for
example, it checks that GHC exists on the system. The second line
performs the actual building, while the last both copies the build
results to some permanent place and registers the package with GHC.

2.2.2. Building and installing a user package

$ runhaskell Setup.hs configure --user
$ runhaskell Setup.hs build
$ runhaskell Setup.hs install

The package is installed under the user’s home directory and is
registered in the user’s package database (setup configure --user).

2.2.3. Installing packages from Hackage

The cabal tool also can download, configure, build and install a
Hackage [http://hackage.haskell.org/] package and all of its
dependencies in a single step. To do this, run:

$ cabal install [PACKAGE...]

To browse the list of available packages, visit the
Hackage [http://hackage.haskell.org/] web site.

2.2.4. Developing with sandboxes

By default, any dependencies of the package are installed into the
global or user package databases (e.g. using
cabal install --only-dependencies). If you’re building several
different packages that have incompatible dependencies, this can cause
the build to fail. One way to avoid this problem is to build each
package in an isolated environment (“sandbox”), with a sandbox-local
package database. Because sandboxes are per-project, inconsistent
dependencies can be simply disallowed.

For more on sandboxes, see also this
article [http://coldwa.st/e/blog/2013-08-20-Cabal-sandbox.html].

2.2.4.1. Sandboxes: basic usage

To initialise a fresh sandbox in the current directory, run
cabal sandbox init. All subsequent commands (such as build and
install) from this point will use the sandbox.

$ cd /path/to/my/haskell/library
$ cabal sandbox init # Initialise the sandbox
$ cabal install --only-dependencies # Install dependencies into the sandbox
$ cabal build # Build your package inside the sandbox

It can be useful to make a source package available for installation in
the sandbox - for example, if your package depends on a patched or an
unreleased version of a library. This can be done with the
cabal sandbox add-source command - think of it as “local Hackage [http://hackage.haskell.org/]”.
If an add-source dependency is later modified, it is reinstalled automatically.

$ cabal sandbox add-source /my/patched/library # Add a new add-source dependency
$ cabal install --dependencies-only # Install it into the sandbox
$ cabal build # Build the local package
$ $EDITOR /my/patched/library/Source.hs # Modify the add-source dependency
$ cabal build # Modified dependency is automatically reinstalled

Normally, the sandbox settings (such as optimisation level) are
inherited from the main Cabal config file ($HOME/cabal/config).
Sometimes, though, you need to change some settings specifically for a
single sandbox. You can do this by creating a cabal.config file in
the same directory with your cabal.sandbox.config (which was created
by sandbox init). This file has the same syntax as the main Cabal
config file.

$ cat cabal.config
documentation: True
constraints: foo == 1.0, bar >= 2.0, baz
$ cabal build # Uses settings from the cabal.config file

When you have decided that you no longer want to build your package
inside a sandbox, just delete it:

$ cabal sandbox delete # Built-in command
$ rm -rf .cabal-sandbox cabal.sandbox.config # Alternative manual method

2.2.4.2. Sandboxes: advanced usage

The default behaviour of the add-source command is to track
modifications done to the added dependency and reinstall the sandbox
copy of the package when needed. Sometimes this is not desirable: in
these cases you can use add-source --snapshot, which disables the
change tracking. In addition to add-source, there are also
list-sources and delete-source commands.

Sometimes one wants to share a single sandbox between multiple packages.
This can be easily done with the --sandbox option:

$ mkdir -p /path/to/shared-sandbox
$ cd /path/to/shared-sandbox
$ cabal sandbox init --sandbox .
$ cd /path/to/package-a
$ cabal sandbox init --sandbox /path/to/shared-sandbox
$ cd /path/to/package-b
$ cabal sandbox init --sandbox /path/to/shared-sandbox

Note that cabal sandbox init --sandbox . puts all sandbox files into
the current directory. By default, cabal sandbox init initialises a
new sandbox in a newly-created subdirectory of the current working
directory (./.cabal-sandbox).

Using multiple different compiler versions simultaneously is also
supported, via the -w option:

$ cabal sandbox init
$ cabal install --only-dependencies -w /path/to/ghc-1 # Install dependencies for both compilers
$ cabal install --only-dependencies -w /path/to/ghc-2
$ cabal configure -w /path/to/ghc-1 # Build with the first compiler
$ cabal build
$ cabal configure -w /path/to/ghc-2 # Build with the second compiler
$ cabal build

It can be occasionally useful to run the compiler-specific package
manager tool (e.g. ghc-pkg) on the sandbox package DB directly
(for example, you may need to unregister some packages). The
cabal sandbox hc-pkg command is a convenient wrapper that runs the
compiler-specific package manager tool with the arguments:

$ cabal -v sandbox hc-pkg list
Using a sandbox located at /path/to/.cabal-sandbox
'ghc-pkg' '--global' '--no-user-package-conf'
 '--package-conf=/path/to/.cabal-sandbox/i386-linux-ghc-7.4.2-packages.conf.d'
 'list'
[...]

The --require-sandbox option makes all sandbox-aware commands
(install/build/etc.) exit with error if there is no sandbox
present. This makes it harder to accidentally modify the user package
database. The option can be also turned on via the per-user
configuration file (~/.cabal/config) or the per-project one
($PROJECT_DIR/cabal.config). The error can be squelched with
--no-require-sandbox.

The option --sandbox-config-file allows to specify the location of
the cabal.sandbox.config file (by default, cabal searches for it
in the current directory). This provides the same functionality as
shared sandboxes, but sometimes can be more convenient. Example:

$ mkdir my/sandbox
$ cd my/sandbox
$ cabal sandbox init
$ cd /path/to/my/project
$ cabal --sandbox-config-file=/path/to/my/sandbox/cabal.sandbox.config install
Uses the sandbox located at /path/to/my/sandbox/.cabal-sandbox
$ cd ~
$ cabal --sandbox-config-file=/path/to/my/sandbox/cabal.sandbox.config install
Still uses the same sandbox

The sandbox config file can be also specified via the
CABAL_SANDBOX_CONFIG environment variable.

Finally, the flag --ignore-sandbox lets you temporarily ignore an
existing sandbox:

$ mkdir my/sandbox
$ cd my/sandbox
$ cabal sandbox init
$ cabal --ignore-sandbox install text
Installs 'text' in the user package database ('~/.cabal').

2.2.5. Creating a binary package

When creating binary packages (e.g. for Red Hat or Debian) one needs to
create a tarball that can be sent to another system for unpacking in the
root directory:

$ runhaskell Setup.hs configure --prefix=/usr
$ runhaskell Setup.hs build
$ runhaskell Setup.hs copy --destdir=/tmp/mypkg
$ tar -czf mypkg.tar.gz /tmp/mypkg/

If the package contains a library, you need two additional steps:

$ runhaskell Setup.hs register --gen-script
$ runhaskell Setup.hs unregister --gen-script

This creates shell scripts register.sh and unregister.sh, which
must also be sent to the target system. After unpacking there, the
package must be registered by running the register.sh script. The
unregister.sh script would be used in the uninstall procedure of the
package. Similar steps may be used for creating binary packages for
Windows.

The following options are understood by all commands:

	
--help, -h or -?

	List the available options for the command.

	
--verbose=n or -v n

	Set the verbosity level (0-3). The normal level is 1; a missing n
defaults to 2.

There is also an extended version of this command which can be
used to fine-tune the verbosity of output. It takes the
form [silent|normal|verbose|debug]flags, where flags
is a list of + flags which toggle various aspects of
output. At the moment, only +callsite and +callstack
are supported, which respectively toggle call site and call
stack printing (these are only supported if Cabal
is built with a sufficiently recent GHC.)

The various commands and the additional options they support are
described below. In the simple build infrastructure, any other options
will be reported as errors.

2.2.6. setup configure

Prepare to build the package. Typically, this step checks that the
target platform is capable of building the package, and discovers
platform-specific features that are needed during the build.

The user may also adjust the behaviour of later stages using the options
listed in the following subsections. In the simple build infrastructure,
the values supplied via these options are recorded in a private file
read by later stages.

If a user-supplied configure script is run (see the section on
system-dependent
parameters or
on complex
packages), it is
passed the --with-hc-pkg, --prefix, --bindir,
--libdir, --dynlibdir, --datadir, --libexecdir and
--sysconfdir options. In addition the value of the
--with-compiler option is passed in a --with-hc-pkg option
and all options specified with --configure-option are passed on.

Note

GNU autoconf places restrictions on paths, including the directory
that the package is built from. [https://www.gnu.org/software/autoconf/manual/autoconf.html#File-System-Conventions]
The errors produced when this happens can be obscure; Cabal attempts to
detect and warn in this situation, but it is not perfect.

In Cabal 2.0, support for a single positional argument was added to
setup configure This makes Cabal configure the specific component to
be configured. Specified names can be qualified with lib: or
exe: in case just a name is ambiguous (as would be the case for a
package named p which has a library and an executable named p.)
This has the following effects:

	Subsequent invocations of cabal build, register, etc. operate only
on the configured component.

	Cabal requires all “internal” dependencies (e.g., an executable
depending on a library defined in the same package) must be found in
the set of databases via --package-db (and related flags): these
dependencies are assumed to be up-to-date. A dependency can be
explicitly specified using --dependency simply by giving the name
of the internal library; e.g., the dependency for an internal library
named foo is given as
--dependency=pkg-internal=pkg-1.0-internal-abcd.

	Only the dependencies needed for the requested component are
required. Similarly, when --exact-configuration is specified,
it’s only necessary to specify --dependency for the component.
(As mentioned previously, you must specify internal dependencies as
well.)

	Internal build-tool-depends and build-tools dependencies are expected
to be in the PATH upon subsequent invocations of setup.

Full details can be found in the Componentized Cabal
proposal [https://github.com/ezyang/ghc-proposals/blob/master/proposals/0000-componentized-cabal.rst].

2.2.6.1. Programs used for building

The following options govern the programs used to process the source
files of a package:

	
--ghc or -g, --jhc, --lhc, --uhc

	Specify which Haskell implementation to use to build the package. At
most one of these flags may be given. If none is given, the
implementation under which the setup script was compiled or
interpreted is used.

	
--with-compiler=path or -w *path*

	Specify the path to a particular compiler. If given, this must match
the implementation selected above. The default is to search for the
usual name of the selected implementation.

This flag also sets the default value of the --with-hc-pkg
option to the package tool for this compiler. Check the output of
setup configure -v to ensure that it finds the right package
tool (or use --with-hc-pkg explicitly).

	
--with-hc-pkg=path

	Specify the path to the package tool, e.g. ghc-pkg. The package
tool must be compatible with the compiler specified by
--with-compiler. If this option is omitted, the default value is
determined from the compiler selected.

	
--with-prog=path

	Specify the path to the program prog. Any program known to Cabal
can be used in place of prog. It can either be a fully path or the
name of a program that can be found on the program search path. For
example: --with-ghc=ghc-6.6.1 or
--with-cpphs=/usr/local/bin/cpphs. The full list of accepted
programs is not enumerated in this user guide. Rather, run
cabal install --help to view the list.

	
--prog-options=options

	Specify additional options to the program prog. Any program known
to Cabal can be used in place of prog. For example:
--alex-options="--template=mytemplatedir/". The options is
split into program options based on spaces. Any options containing
embedded spaced need to be quoted, for example
--foo-options='--bar="C:\Program File\Bar"'. As an alternative
that takes only one option at a time but avoids the need to quote,
use --prog-option instead.

	
--prog-option=option

	Specify a single additional option to the program prog. For
passing an option that contain embedded spaces, such as a file name
with embedded spaces, using this rather than --prog-options
means you do not need an additional level of quoting. Of course if you
are using a command shell you may still need to quote, for example
--foo-options="--bar=C:\Program File\Bar".

All of the options passed with either --prog-options
or --prog-option are passed in the order they were
specified on the configure command line.

2.2.6.2. Installation paths

The following options govern the location of installed files from a
package:

	
--prefix=dir

	The root of the installation. For example for a global install you
might use /usr/local on a Unix system, or C:\Program Files
on a Windows system. The other installation paths are usually
subdirectories of prefix, but they don’t have to be.

In the simple build system, dir may contain the following path
variables: $pkgid, $pkg, $version, $compiler,
$os, $arch, $abi, $abitag

	
--bindir=dir

	Executables that the user might invoke are installed here.

In the simple build system, dir may contain the following path
variables: $prefix, $pkgid, $pkg, $version,
$compiler, $os, $arch, $abi, $abitag

	
--libdir=dir

	Object-code libraries are installed here.

In the simple build system, dir may contain the following path
variables: $prefix, $bindir, $pkgid, $pkg,
$version, $compiler, $os, $arch, $abi,
$abitag

	
--dynlibdir=dir

	Dynamic libraries are installed here.

By default, this is set to $libdir/$abi, which is usually not equal to
$libdir/$libsubdir.

In the simple build system, dir may contain the following path
variables: $prefix, $bindir, $libdir, $pkgid, $pkg,
$version, $compiler, $os, $arch, $abi,
$abitag

	
--libexecdir=dir

	Executables that are not expected to be invoked directly by the user
are installed here.

In the simple build system, dir may contain the following path
variables: $prefix, $bindir, $libdir, $libsubdir,
$pkgid, $pkg, $version, $compiler, $os,
$arch, $abi, $abitag

	
--datadir=dir

	Architecture-independent data files are installed here.

In the simple build system, dir may contain the following path
variables: $prefix, $bindir, $libdir, $libsubdir,
$pkgid, $pkg, $version, $compiler, $os,
$arch, $abi, $abitag

	
--sysconfdir=dir

	Installation directory for the configuration files.

In the simple build system, dir may contain the following path
variables: $prefix, $bindir, $libdir, $libsubdir,
$pkgid, $pkg, $version, $compiler, $os,
$arch, $abi, $abitag

In addition the simple build system supports the following installation
path options:

	
--libsubdir=dir

	A subdirectory of libdir in which libraries are actually installed. For
example, in the simple build system on Unix, the default libdir is
/usr/local/lib, and libsubdir contains the compiler ABI and package
identifier,
e.g. x86_64-linux-ghc-8.0.2/mypkg-0.1.0-IxQNmCA7qrSEQNkoHSF7A, so
libraries would be installed in
/usr/local/lib/x86_64-linux-ghc-8.0.2/mypkg-0.1.0-IxQNmCA7qrSEQNkoHSF7A/.

dir may contain the following path variables: $pkgid,
$pkg, $version, $compiler, $os, $arch, $abi,
$abitag

	
--libexecsubdir=dir

	A subdirectory of libexecdir in which private executables are
installed. For example, in the simple build system on Unix, the default
libexecdir is /usr/local/libexec, and libsubdir is
x86_64-linux-ghc-8.0.2/mypkg-0.1.0, so private executables would be
installed in /usr/local/libexec/x86_64-linux-ghc-8.0.2/mypkg-0.1.0/

dir may contain the following path variables: $pkgid,
$pkg, $version, $compiler, $os, $arch, $abi,
$abitag

	
--datasubdir=dir

	A subdirectory of datadir in which data files are actually
installed.

dir may contain the following path variables: $pkgid,
$pkg, $version, $compiler, $os, $arch, $abi,
$abitag

	
--docdir=dir

	Documentation files are installed relative to this directory.

dir may contain the following path variables: $prefix,
$bindir, $libdir, $libsubdir, $datadir,
$datasubdir, $pkgid, $pkg, $version, $compiler,
$os, $arch, $abi, $abitag

	
--htmldir=dir

	HTML documentation files are installed relative to this directory.

dir may contain the following path variables: $prefix,
$bindir, $libdir, $libsubdir, $datadir,
$datasubdir, $docdir, $pkgid, $pkg, $version,
$compiler, $os, $arch, $abi, $abitag

	
--program-prefix=prefix

	Prepend prefix to installed program names.

prefix may contain the following path variables: $pkgid,
$pkg, $version, $compiler, $os, $arch, $abi,
$abitag

	
--program-suffix=suffix

	Append suffix to installed program names. The most obvious use for
this is to append the program’s version number to make it possible
to install several versions of a program at once:
--program-suffix='$version'.

suffix may contain the following path variables: $pkgid,
$pkg, $version, $compiler, $os, $arch, $abi,
$abitag

2.2.6.2.1. Path variables in the simple build system

For the simple build system, there are a number of variables that can be
used when specifying installation paths. The defaults are also specified
in terms of these variables. A number of the variables are actually for
other paths, like $prefix. This allows paths to be specified
relative to each other rather than as absolute paths, which is important
for building relocatable packages (see prefix
independence).

	$prefix

	The path variable that stands for the root of the installation. For
an installation to be relocatable, all other installation paths must
be relative to the $prefix variable.

	$bindir

	The path variable that expands to the path given by the --bindir
configure option (or the default).

	$libdir

	As above but for --libdir

	$libsubdir

	As above but for --libsubdir

	$dynlibdir

	As above but for --dynlibdir

	$datadir

	As above but for --datadir

	$datasubdir

	As above but for --datasubdir

	$docdir

	As above but for --docdir

	$pkgid

	The name and version of the package, e.g. mypkg-0.2

	$pkg

	The name of the package, e.g. mypkg

	$version

	The version of the package, e.g. 0.2

	$compiler

	The compiler being used to build the package, e.g. ghc-6.6.1

	$os

	The operating system of the computer being used to build the
package, e.g. linux, windows, osx, freebsd or
solaris

	$arch

	The architecture of the computer being used to build the package,
e.g. i386, x86_64, ppc or sparc

	$abitag

	An optional tag that a compiler can use for telling incompatible
ABI’s on the same architecture apart. GHCJS encodes the underlying
GHC version in the ABI tag.

	$abi

	A shortcut for getting a path that completely identifies the
platform in terms of binary compatibility. Expands to the same value
as $arch-$os-compiler-$abitag if the compiler uses an abi tag,
$arch-$os-$compiler if it doesn’t.

2.2.6.2.2. Paths in the simple build system

For the simple build system, the following defaults apply:

Default installation paths

	Option

	Unix Default

	Windows Default

	--prefix (global)

	/usr/local

	%PROGRAMFILES%\Haskell

	--prefix (per-user)

	$HOME/.cabal

	%APPDATA%\cabal

	--bindir

	$prefix/bin

	$prefix\bin

	--libdir

	$prefix/lib

	$prefix

	--libsubdir (others)

	$pkgid/$compiler

	$pkgid\$compiler

	--dynlibdir

	$libdir/$abi

	$libdir\$abi

	--libexecdir

	$prefix/libexec

	$prefix\$pkgid

	--datadir (executable)

	$prefix/share

	$prefix

	--datadir (library)

	$prefix/share

	%PROGRAMFILES%\Haskell

	--datasubdir

	$pkgid

	$pkgid

	--docdir

	$datadir/doc/$pkgid

	$prefix\doc\$pkgid

	--sysconfdir

	$prefix/etc

	$prefix\etc

	--htmldir

	$docdir/html

	$docdir\html

	--program-prefix

	(empty)

	(empty)

	--program-suffix

	(empty)

	(empty)

2.2.6.2.3. Prefix-independence

On Windows it is possible to obtain the pathname of the running program.
This means that we can construct an installable executable package that
is independent of its absolute install location. The executable can find
its auxiliary files by finding its own path and knowing the location of
the other files relative to $bindir. Prefix-independence is
particularly useful: it means the user can choose the install location
(i.e. the value of $prefix) at install-time, rather than having to
bake the path into the binary when it is built.

In order to achieve this, we require that for an executable on Windows,
all of $bindir, $libdir, $dynlibdir, $datadir and $libexecdir begin
with $prefix. If this is not the case then the compiled executable
will have baked-in all absolute paths.

The application need do nothing special to achieve prefix-independence.
If it finds any files using getDataFileName and the other functions
provided for the
purpose,
the files will be accessed relative to the location of the current
executable.

A library cannot (currently) be prefix-independent, because it will be
linked into an executable whose file system location bears no relation
to the library package.

2.2.6.3. Controlling Flag Assignments

Flag assignments (see the resolution of conditions and
flags)
can be controlled with the following command line options.

	
-f flagname or -f -flagname

	Force the specified flag to true or false (if preceded with
a -). Later specifications for the same flags will override
earlier, i.e., specifying -fdebug -f-debug is equivalent to
-f-debug

	
--flags=flagspecs

	Same as -f, but allows specifying multiple flag assignments at
once. The parameter is a space-separated list of flag names (to
force a flag to true), optionally preceded by a - (to force
a flag to false). For example,
--flags="debug -feature1 feature2" is equivalent to
-fdebug -f-feature1 -ffeature2.

2.2.6.4. Building Test Suites

	
--enable-tests

	Build the test suites defined in the package description file during
the build stage. Check for dependencies required by the test
suites. If the package is configured with this option, it will be
possible to run the test suites with the test command after the
package is built.

	
--disable-tests

	(default) Do not build any test suites during the build stage.
Do not check for dependencies required only by the test suites. It
will not be possible to invoke the test command without
reconfiguring the package.

	
--enable-coverage

	Build libraries and executables (including test suites) with Haskell
Program Coverage enabled. Running the test suites will automatically
generate coverage reports with HPC.

	
--disable-coverage

	(default) Do not enable Haskell Program Coverage.

2.2.6.5. Miscellaneous options

	
--user

	Does a per-user installation. This changes the default installation
prefix. It also allow
dependencies to be satisfied by the user’s package database, in
addition to the global database. This also implies a default of
--user for any subsequent install command, as packages
registered in the global database should not depend on packages
registered in a user’s database.

	
--global

	(default) Does a global installation. In this case package
dependencies must be satisfied by the global package database. All
packages in the user’s package database will be ignored. Typically
the final installation step will require administrative privileges.

	
--package-db=db

	Allows package dependencies to be satisfied from this additional
package database db in addition to the global package database.
All packages in the user’s package database will be ignored. The
interpretation of db is implementation-specific. Typically it will
be a file or directory. Not all implementations support arbitrary
package databases.

This pushes an extra db onto the db stack. The --global and
--user mode switches add the respective [Global] and [Global,
User] dbs to the initial stack. There is a compiler-implementation
constraint that the global db must appear first in the stack, and if
the user one appears at all, it must appear immediately after the
global db.

To reset the stack, use --package-db=clear.

	
--ipid=ipid

	Specifies the installed package identifier of the package to be
built; this identifier is passed on to GHC and serves as the basis
for linker symbols and the id field in a ghc-pkg
registration. When a package has multiple components, the actual
component identifiers are derived off of this identifier (e.g., an
internal library foo from package p-0.1-abcd will get the
identifier p-0.1-abcd-foo.

	
--cid=cid

	Specifies the component identifier of the component being built;
this is only valid if you are configuring a single component.

	
--default-user-config=file

	Allows a “default” cabal.config freeze file to be passed in
manually. This file will only be used if one does not exist in the
project directory already. Typically, this can be set from the
global cabal config file so as to provide a default set of
partial constraints to be used by projects, providing a way for
users to peg themselves to stable package collections.

	
--enable-optimization[=n] or -O [n]

	(default) Build with optimization flags (if available). This is
appropriate for production use, taking more time to build faster
libraries and programs.

The optional n value is the optimisation level. Some compilers
support multiple optimisation levels. The range is 0 to 2. Level 0
is equivalent to --disable-optimization, level 1 is the
default if no n parameter is given. Level 2 is higher optimisation
if the compiler supports it. Level 2 is likely to lead to longer
compile times and bigger generated code.

When optimizations are enabled, Cabal passes -O2 to the C compiler.

	
--disable-optimization

	Build without optimization. This is suited for development: building
will be quicker, but the resulting library or programs will be
slower.

	
--enable-profiling

	Build libraries and executables with profiling enabled (for
compilers that support profiling as a separate mode). For this to
work, all libraries used by this package must also have been built
with profiling support. For libraries this involves building an
additional instance of the library in addition to the normal
non-profiling instance. For executables it changes the single
executable to be built in profiling mode.

This flag covers both libraries and executables, but can be
overridden by the --enable-library-profiling flag.

See also the --profiling-detail flag below.

	
--disable-profiling

	(default) Do not enable profiling in generated libraries and
executables.

	
--enable-library-profiling or -p

	As with --enable-profiling above, but it applies only for
libraries. So this generates an additional profiling instance of the
library in addition to the normal non-profiling instance.

The --enable-profiling flag controls the profiling mode for both
libraries and executables, but if different modes are desired for
libraries versus executables then use --enable-library-profiling
as well.

	
--disable-library-profiling

	(default) Do not generate an additional profiling version of the library.

	
--profiling-detail[=level]

	Some compilers that support profiling, notably GHC, can allocate
costs to different parts of the program and there are different
levels of granularity or detail with which this can be done. In
particular for GHC this concept is called “cost centers”, and GHC
can automatically add cost centers, and can do so in different ways.

This flag covers both libraries and executables, but can be
overridden by the --library-profiling-detail flag.

Currently this setting is ignored for compilers other than GHC. The
levels that cabal currently supports are:

	default

	For GHC this uses exported-functions for libraries and
toplevel-functions for executables.

	none

	No costs will be assigned to any code within this component.

	exported-functions

	Costs will be assigned at the granularity of all top level
functions exported from each module. In GHC specifically, this
is for non-inline functions.

	toplevel-functions

	Costs will be assigned at the granularity of all top level
functions in each module, whether they are exported from the
module or not. In GHC specifically, this is for non-inline
functions.

	all-functions

	Costs will be assigned at the granularity of all functions in
each module, whether top level or local. In GHC specifically,
this is for non-inline toplevel or where-bound functions or
values.

This flag is new in Cabal-1.24. Prior versions used the equivalent
of none above.

	
--library-profiling-detail[=level]

	As with --profiling-detail above, but it applies only for
libraries.

The level for both libraries and executables is set by the
--profiling-detail flag, but if different levels are desired
for libraries versus executables then use
--library-profiling-detail as well.

	
--enable-library-vanilla

	(default) Build ordinary libraries (as opposed to profiling
libraries). This is independent of the
--enable-library-profiling option. If you enable both, you get
both.

	
--disable-library-vanilla

	Do not build ordinary libraries. This is useful in conjunction with
--enable-library-profiling to build only profiling libraries,
rather than profiling and ordinary libraries.

	
--enable-library-for-ghci

	(default) Build libraries suitable for use with GHCi.

	
--disable-library-for-ghci

	Not all platforms support GHCi and indeed on some platforms, trying
to build GHCi libs fails. In such cases this flag can be used as a
workaround.

	
--enable-split-objs

	Use the GHC -split-objs feature when building the library. This
reduces the final size of the executables that use the library by
allowing them to link with only the bits that they use rather than
the entire library. The downside is that building the library takes
longer and uses considerably more memory.

	
--disable-split-objs

	(default) Do not use the GHC -split-objs feature. This makes
building the library quicker but the final executables that use the
library will be larger.

	
--enable-executable-stripping

	(default) When installing binary executable programs, run the
strip program on the binary. This can considerably reduce the
size of the executable binary file. It does this by removing
debugging information and symbols. While such extra information is
useful for debugging C programs with traditional debuggers it is
rarely helpful for debugging binaries produced by Haskell compilers.

Not all Haskell implementations generate native binaries. For such
implementations this option has no effect.

	
--disable-executable-stripping

	Do not strip binary executables during installation. You might want
to use this option if you need to debug a program using gdb, for
example if you want to debug the C parts of a program containing
both Haskell and C code. Another reason is if your are building a
package for a system which has a policy of managing the stripping
itself (such as some Linux distributions).

	
--enable-shared

	Build shared library. This implies a separate compiler run to
generate position independent code as required on most platforms.

	
--disable-shared

	(default) Do not build shared library.

	
--enable-static

	Build a static library. This passes -staticlib to GHC (available
for iOS, and with 8.4 more platforms). The result is an archive .a
containing all dependent haskell libararies combined.

	
--disable-static

	(default) Do not build a static library.

	
--enable-executable-dynamic

	Link dependent Haskell libraries into executables dynamically.
The executable’s library dependencies must have been
built as shared objects. This implies --enable-shared
unless --disable-shared is explicitly specified.

	
--disable-executable-dynamic

	(default) Link dependent Haskell libraries into executables statically.
Non-Haskell (C) libraries are still linked dynamically, including libc,
so the result is still not a fully static executable
unless --enable-executable-static is given.

	
--enable-executable-static

	Build fully static executables.
This link all dependent libraries into executables statically,
including libc.

	
--disable-executable-static

	(default) Do not build fully static executables.

	
--configure-option=str

	An extra option to an external configure script, if one is used
(see the section on system-dependent
parameters).
There can be several of these options.

	
--extra-include-dirs[=dir]

	An extra directory to search for C header files. You can use this
flag multiple times to get a list of directories.

You might need to use this flag if you have standard system header
files in a non-standard location that is not mentioned in the
package’s .cabal file. Using this option has the same affect as
appending the directory dir to the include-dirs field in each
library and executable in the package’s .cabal file. The
advantage of course is that you do not have to modify the package at
all. These extra directories will be used while building the package
and for libraries it is also saved in the package registration
information and used when compiling modules that use the library.

	
--extra-lib-dirs[=dir]

	An extra directory to search for system libraries files. You can use
this flag multiple times to get a list of directories.

	
--extra-framework-dirs[=dir]

	An extra directory to search for frameworks (OS X only). You can use
this flag multiple times to get a list of directories.

You might need to use this flag if you have standard system
libraries in a non-standard location that is not mentioned in the
package’s .cabal file. Using this option has the same affect as
appending the directory dir to the extra-lib-dirs field in
each library and executable in the package’s .cabal file. The
advantage of course is that you do not have to modify the package at
all. These extra directories will be used while building the package
and for libraries it is also saved in the package registration
information and used when compiling modules that use the library.

	
--dependency[=pkgname=ipid]

	Specify that a particular dependency should used for a particular
package name. In particular, it declares that any reference to
pkgname in a build-depends should be resolved to
ipid.

	
--exact-configuration

	This changes Cabal to require every dependency be explicitly
specified using --dependency, rather than use Cabal’s (very
simple) dependency solver. This is useful for programmatic use of
Cabal’s API, where you want to error if you didn’t specify enough
--dependency flags.

	
--allow-newer[=pkgs], --allow-older[=pkgs]

	Selectively relax upper or lower bounds in dependencies without
editing the package description respectively.

The following description focuses on upper bounds and the
--allow-newer flag, but applies analogously to
--allow-older and lower bounds. --allow-newer
and --allow-older can be used at the same time.

If you want to install a package A that depends on B >= 1.0 && <
2.0, but you have the version 2.0 of B installed, you can compile A
against B 2.0 by using cabal install --allow-newer=B A. This
works for the whole package index: if A also depends on C that in
turn depends on B < 2.0, C’s dependency on B will be also relaxed.

Example:

$ cd foo
$ cabal configure
Resolving dependencies...
cabal: Could not resolve dependencies:
[...]
$ cabal configure --allow-newer
Resolving dependencies...
Configuring foo...

Additional examples:

Relax upper bounds in all dependencies.
$ cabal install --allow-newer foo

Relax upper bounds only in dependencies on bar, baz and quux.
$ cabal install --allow-newer=bar,baz,quux foo

Relax the upper bound on bar and force bar==2.1.
$ cabal install --allow-newer=bar --constraint="bar==2.1" foo

It’s also possible to limit the scope of --allow-newer to single
packages with the --allow-newer=scope:dep syntax. This means
that the dependency on dep will be relaxed only for the package
scope.

Example:

Relax upper bound in foo's dependency on base; also relax upper bound in
every package's dependency on lens.
$ cabal install --allow-newer=foo:base,lens

Relax upper bounds in foo's dependency on base and bar's dependency
on time; also relax the upper bound in the dependency on lens specified by
any package.
$ cabal install --allow-newer=foo:base,lens --allow-newer=bar:time

Finally, one can enable --allow-newer permanently by setting
allow-newer: True in the ~/.cabal/config file. Enabling
‘allow-newer’ selectively is also supported in the config file
(allow-newer: foo, bar, baz:base).

	
--constraint=constraint

	Restrict solutions involving a package to given version
bounds, flag settings, and other properties. For example, to
consider only install plans that use version 2.1 of bar
or do not use bar at all, write:

$ cabal install --constraint="bar == 2.1"

Version bounds have the same syntax as build-depends.
As a special case, the following prevents bar from being
used at all:

Note: this is just syntax sugar for '> 1 && < 1', and is
supported by build-depends.
$ cabal install --constraint="bar -none"

You can also specify flag assignments:

Require bar to be installed with the foo flag turned on and
the baz flag turned off.
$ cabal install --constraint="bar +foo -baz"

To specify multiple constraints, you may pass the
constraint option multiple times.

There are also some more specialized constraints, which most people
don’t generally need:

Require that a version of bar be used that is already installed in
the global package database.
$ cabal install --constraint="bar installed"

Require the local source copy of bar to be used.
(Note: By default, if we have a local package we will
automatically use it, so it will generally not be necessary to
specify this.)
$ cabal install --constraint="bar source"

Require that bar have test suites and benchmarks enabled.
$ cabal install --constraint="bar test" --constraint="bar bench"

By default, constraints only apply to build dependencies
(build-depends), build dependencies of build
dependencies, and so on. Constraints normally do not apply to
dependencies of the Setup.hs script of any package
(setup-depends) nor do they apply to build tools
(build-tool-depends) or the dependencies of build
tools. To explicitly apply a constraint to a setup or build
tool dependency, you can add a qualifier to the constraint as
follows:

Example use of the 'any' qualifier. This constraint
applies to package bar anywhere in the dependency graph.
$ cabal install --constraint="any.bar == 1.0"

Example uses of 'setup' qualifiers.

This constraint applies to package bar when it is a
dependency of any Setup.hs script.
$ cabal install --constraint="setup.bar == 1.0"

This constraint applies to package bar when it is a
dependency of the Setup.hs script of package foo.
$ cabal install --constraint="foo:setup.bar == 1.0"

	
--preference=preference

	Specify a soft constraint on versions of a package. The solver will
attempt to satisfy these preferences on a “best-effort” basis.

	
--disable-response-files

	Enable workaround for older versions of programs such as ar or
ld that do not support response file arguments (i.e. @file
arguments). You may want this flag only if you specify custom ar
executable. For system ar or the one bundled with ghc on
Windows the cabal should do the right thing and hence should
normally not require this flag.

2.2.7. setup build

Perform any preprocessing or compilation needed to make this package
ready for installation.

This command takes the following options:

	
--prog-options=options, --prog-option=option

	These are mostly the same as the options configure
step. Unlike the options specified at the
configure step, any program options specified at the build step are
not persistent but are used for that invocation only. They options
specified at the build step are in addition not in replacement of
any options specified at the configure step.

2.2.8. setup haddock

Build the documentation for the package using Haddock [http://www.haskell.org/haddock/].
By default, only the documentation for the exposed modules is generated
(but see the --executables and --internal flags below).

This command takes the following options:

	
--hoogle

	Generate a file dist/doc/html/pkgid.txt, which can be
converted by Hoogle [http://www.haskell.org/hoogle/] into a
database for searching. This is equivalent to running Haddock [http://www.haskell.org/haddock/]
with the --hoogle flag.

	
--html-location=url

	Specify a template for the location of HTML documentation for
prerequisite packages. The substitutions (see
listing) are applied to the
template to obtain a location for each package, which will be used
by hyperlinks in the generated documentation. For example, the
following command generates links pointing at Hackage [http://hackage.haskell.org/] pages:

setup haddock
–html-location=’http://hackage.haskell.org/packages/archive/$pkg/latest/doc/html’

Here the argument is quoted to prevent substitution by the shell. If
this option is omitted, the location for each package is obtained
using the package tool (e.g. ghc-pkg).

	
--executables

	Also run Haddock [http://www.haskell.org/haddock/] for the modules of all the executable programs. By default
Haddock [http://www.haskell.org/haddock/] is run only on the exported modules.

	
--internal

	Run Haddock [http://www.haskell.org/haddock/] for the all
modules, including unexposed ones, and make
Haddock [http://www.haskell.org/haddock/] generate documentation
for unexported symbols as well.

	
--css=path

	The argument path denotes a CSS file, which is passed to
Haddock [http://www.haskell.org/haddock/] and used to set the
style of the generated documentation. This is only needed to
override the default style that
Haddock [http://www.haskell.org/haddock/] uses.

	
--hyperlink-source

	Generate Haddock [http://www.haskell.org/haddock/] documentation integrated with HsColour [http://www.cs.york.ac.uk/fp/darcs/hscolour/] . First,
HsColour [http://www.cs.york.ac.uk/fp/darcs/hscolour/] is run to generate colourised code. Then Haddock [http://www.haskell.org/haddock/] is run to
generate HTML documentation. Each entity shown in the documentation is
linked to its definition in the colourised code.

	
--hscolour-css=path

	The argument path denotes a CSS file, which is passed to HsColour [http://www.cs.york.ac.uk/fp/darcs/hscolour/] as in

runhaskell Setup.hs hscolour –css=*path*

2.2.9. setup hscolour

Produce colourised code in HTML format using HsColour [http://www.cs.york.ac.uk/fp/darcs/hscolour/]. Colourised code for
exported modules is put in dist/doc/html/pkgid/src.

This command takes the following options:

	
--executables

	Also run HsColour [http://www.cs.york.ac.uk/fp/darcs/hscolour/] on the sources of all executable programs. Colourised
code is put in dist/doc/html/pkgid/executable/src.

	
--css=path

	Use the given CSS file for the generated HTML files. The CSS file
defines the colours used to colourise code. Note that this copies
the given CSS file to the directory with the generated HTML files
(renamed to hscolour.css) rather than linking to it.

2.2.10. setup install

Copy the files into the install locations and (for library packages)
register the package with the compiler, i.e. make the modules it
contains available to programs.

The install locations are determined by
options to setup configure.

This command takes the following options:

	
--global

	Register this package in the system-wide database. (This is the
default, unless the setup configure --user option was supplied
to the configure command.)

	
--user

	Register this package in the user’s local package database. (This is
the default if the setup configure --user option was supplied
to the configure command.)

2.2.11. setup copy

Copy the files without registering them. This command is mainly of use
to those creating binary packages.

This command takes the following option:

	
--destdir=path

	Specify the directory under which to place installed files. If this is
not given, then the root directory is assumed.

2.2.12. setup register

Register this package with the compiler, i.e. make the modules it
contains available to programs. This only makes sense for library
packages. Note that the install command incorporates this action.
The main use of this separate command is in the post-installation step
for a binary package.

This command takes the following options:

	
--global

	Register this package in the system-wide database. (This is the
default.)

	
--user

	Register this package in the user’s local package database.

	
--gen-script

	Instead of registering the package, generate a script containing
commands to perform the registration. On Unix, this file is called
register.sh, on Windows, register.bat. This script might be
included in a binary bundle, to be run after the bundle is unpacked
on the target system.

	
--gen-pkg-config[=path]

	Instead of registering the package, generate a package registration
file (or directory, in some circumstances). This only applies to
compilers that support package registration files which at the
moment is only GHC. The file should be used with the compiler’s
mechanism for registering packages. This option is mainly intended
for packaging systems. If possible use the --gen-script option
instead since it is more portable across Haskell implementations.
The path is optional and can be used to specify a particular
output file to generate. Otherwise, by default the file is the
package name and version with a .conf extension.

This option outputs a directory if the package requires multiple
registrations: this can occur if internal/convenience libraries are
used. These configuration file names are sorted so that they can be
registered in order.

	
--inplace

	Registers the package for use directly from the build tree, without
needing to install it. This can be useful for testing: there’s no
need to install the package after modifying it, just recompile and
test.

This flag does not create a build-tree-local package database. It
still registers the package in one of the user or global databases.

However, there are some caveats. It only works with GHC (currently).
It only works if your package doesn’t depend on having any
supplemental files installed — plain Haskell libraries should be
fine.

2.2.13. setup unregister

Deregister this package with the compiler.

This command takes the following options:

	
--global

	Deregister this package in the system-wide database. (This is the
default.)

	
--user

	Deregister this package in the user’s local package database.

	
--gen-script

	Instead of deregistering the package, generate a script containing
commands to perform the deregistration. On Unix, this file is called
unregister.sh, on Windows, unregister.bat. This script might
be included in a binary bundle, to be run on the target system.

2.2.14. setup clean

Remove any local files created during the configure, build,
haddock, register or unregister steps, and also any files
and directories listed in the extra-tmp-files field.

This command takes the following options:

	
--save-configure, -s

	Keeps the configuration information so it is not necessary to run
the configure step again before building.

2.2.15. setup test

Run the test suites specified in the package description file. Aside
from the following flags, Cabal accepts the name of one or more test
suites on the command line after test. When supplied, Cabal will run
only the named test suites, otherwise, Cabal will run all test suites in
the package.

	
--builddir=dir

	The directory where Cabal puts generated build files (default:
dist). Test logs will be located in the test subdirectory.

	
--human-log=path

	The template used to name human-readable test logs; the path is
relative to dist/test. By default, logs are named according to
the template $pkgid-$test-suite.log, so that each test suite
will be logged to its own human-readable log file. Template
variables allowed are: $pkgid, $compiler, $os,
$arch, $abi, $abitag, $test-suite, and $result.

	
--machine-log=path

	The path to the machine-readable log, relative to dist/test. The
default template is $pkgid.log. Template variables allowed are:
$pkgid, $compiler, $os, $arch, $abi, $abitag
and $result.

	
--show-details=filter

	Determines if the results of individual test cases are shown on the
terminal. May be always (always show), never (never show),
failures (show only failed results), or streaming (show all
results in real time).

	
--test-options=options

	
Give extra options to the test executables.

	

	
--test-option=option

	Give an extra option to the test executables. There is no need to
quote options containing spaces because a single option is assumed,
so options will not be split on spaces.

	
--test-wrapper=path

	The wrapper script/application used to setup and tear down the test
execution context. The text executable path and test arguments are
passed as arguments to the wrapper and it is expected that the wrapper
will return the test’s return code, as well as a copy of stdout/stderr.

2.2.16. setup bench

Run the benchmarks specified in the package description file. Aside
from the following flags, Cabal accepts the name of one or more benchmarks
on the command line after bench. When supplied, Cabal will run
only the named benchmarks, otherwise, Cabal will run all benchmarks in
the package.

	
--benchmark-options=options

	
Give extra options to the benchmark executables.

	

	
--benchmark-option=option

	Give an extra option to the benchmark executables. There is no need to
quote options containing spaces because a single option is assumed,
so options will not be split on spaces.

2.2.17. setup sdist

Create a system- and compiler-independent source distribution in a file
package-version.tar.gz in the dist subdirectory, for
distribution to package builders. When unpacked, the commands listed in
this section will be available.

The files placed in this distribution are the package description file,
the setup script, the sources of the modules named in the package
description file, and files named in the license-file, main-is,
c-sources, asm-sources, cmm-sources, js-sources,
data-files, extra-source-files and extra-doc-files fields.

This command takes the following option:

	
--snapshot

	Append today’s date (in “YYYYMMDD” format) to the version number for
the generated source package. The original package is unaffected.

3. Package Concepts and Development

	3.1. Quickstart
	3.1.1. Using “cabal init”

	3.1.2. Editing the .cabal file

	3.1.3. Modules included in the package

	3.1.4. Modules imported from other packages

	3.1.5. Building the package

	3.1.6. Next steps

	3.2. Package concepts
	3.2.1. The point of packages

	3.2.2. Package names and versions

	3.2.3. Kinds of package: Cabal vs GHC vs system

	3.2.4. Unit of distribution

	3.2.5. Explicit dependencies and automatic package management

	3.2.6. Portability

	3.3. Developing packages
	3.3.1. Creating a package

	3.3.2. Package descriptions

	3.3.3. Custom setup scripts

	3.3.4. Autogenerated modules and includes

	3.3.5. Accessing data files from package code

	3.3.6. System-dependent parameters

	3.3.7. Conditional compilation

	3.3.8. More complex packages

3.1. Quickstart

Lets assume we have created a project directory and already have a
Haskell module or two.

Every project needs a name, we’ll call this example “proglet”.

$ cd proglet/
$ ls
Proglet.hs

It is assumed that (apart from external dependencies) all the files that
make up a package live under a common project root directory. This
simple example has all the project files in one directory, but most
packages will use one or more subdirectories.

To turn this into a Cabal package we need two extra files in the
project’s root directory:

	proglet.cabal: containing package metadata and build information.

	Setup.hs: usually containing a few standardized lines of code,
but can be customized if necessary.

We can create both files manually or we can use cabal init to create
them for us.

3.1.1. Using “cabal init”

The cabal init command is interactive. It asks us a number of
questions starting with the package name and version.

$ cabal init
Package name [default "proglet"]?
Package version [default "0.1"]?
...

It also asks questions about various other bits of package metadata. For
a package that you never intend to distribute to others, these fields
can be left blank.

One of the important questions is whether the package contains a library
or an executable. Libraries are collections of Haskell modules that can
be re-used by other Haskell libraries and programs, while executables
are standalone programs.

What does the package build:
 1) Library
 2) Executable
Your choice?

For the moment these are the only choices. For more complex packages
(e.g. a library and multiple executables or test suites) the .cabal
file can be edited afterwards.

Finally, cabal init creates the initial proglet.cabal and
Setup.hs files, and depending on your choice of license, a
LICENSE file as well.

Generating LICENSE...
Generating Setup.hs...
Generating proglet.cabal...

You may want to edit the .cabal file and add a Description field.

As this stage the proglet.cabal is not quite complete and before you
are able to build the package you will need to edit the file and add
some build information about the library or executable.

3.1.2. Editing the .cabal file

Load up the .cabal file in a text editor. The first part of the
.cabal file has the package metadata and towards the end of the file
you will find the executable or library section.

You will see that the fields that have yet to be filled in are commented
out. Cabal files use “--” Haskell-style comment syntax. (Note that
comments are only allowed on lines on their own. Trailing comments on
other lines are not allowed because they could be confused with program
options.)

If you selected earlier to create a library package then your .cabal
file will have a section that looks like this:

library
 exposed-modules: Proglet
 -- other-modules:
 -- build-depends:

Alternatively, if you selected an executable then there will be a
section like:

executable proglet
 -- main-is:
 -- other-modules:
 -- build-depends:

The build information fields listed (but commented out) are just the few
most important and common fields. There are many others that are covered
later in this chapter.

Most of the build information fields are the same between libraries and
executables. The difference is that libraries have a number of “exposed”
modules that make up the public interface of the library, while
executables have a file containing a Main module.

The name of a library always matches the name of the package, so it is
not specified in the library section. Executables often follow the name
of the package too, but this is not required and the name is given
explicitly.

3.1.3. Modules included in the package

For a library, cabal init looks in the project directory for files
that look like Haskell modules and adds all the modules to the
library:exposed-modules field. For modules that do not form part
of your package’s public interface, you can move those modules to the
other-modules field. Either way, all modules in the library need
to be listed.

For an executable, cabal init does not try to guess which file
contains your program’s Main module. You will need to fill in the
executable:main-is field with the file name of your program’s
Main module (including .hs or .lhs extension). Other modules
included in the executable should be listed in the other-modules
field.

3.1.4. Modules imported from other packages

While your library or executable may include a number of modules, it
almost certainly also imports a number of external modules from the
standard libraries or other pre-packaged libraries. (These other
libraries are of course just Cabal packages that contain a library.)

You have to list all of the library packages that your library or
executable imports modules from. Or to put it another way: you have to
list all the other packages that your package depends on.

For example, suppose the example Proglet module imports the module
Data.Map. The Data.Map module comes from the containers
package, so we must list it:

library
 exposed-modules: Proglet
 other-modules:
 build-depends: containers, base == 4.*

In addition, almost every package also depends on the base library
package because it exports the standard Prelude module plus other
basic modules like Data.List.

You will notice that we have listed base == 4.*. This gives a
constraint on the version of the base package that our package will work
with. The most common kinds of constraints are:

	pkgname >= n

	pkgname ^>= n (since Cabal 2.0)

	pkgname >= n && < m

	pkgname == n.* (since Cabal 1.6)

The last is just shorthand, for example base == 4.* means exactly
the same thing as base >= 4 && < 5. Please refer to the documentation
on the build-depends field for more information.

Also, you can factor out shared build-depends (and other fields such
as ghc-options) into a common stanza which you can import in
your libraries and executable sections. For example:

common shared-properties
 default-language: Haskell2010
 build-depends:
 base == 4.*
 ghc-options:
 -Wall

library
 import: shared-properties
 exposed-modules:
 Proglet

Note that the import must be the first thing in the stanza. For more
information see the Common stanzas section.

3.1.5. Building the package

For simple packages that’s it! We can now try configuring and building
the package:

$ cabal configure
$ cabal build

Assuming those two steps worked then you can also install the package:

$ cabal install

For libraries this makes them available for use in GHCi or to be used by
other packages. For executables it installs the program so that you can
run it (though you may first need to adjust your system’s $PATH).

3.1.6. Next steps

What we have covered so far should be enough for very simple packages
that you use on your own system.

The next few sections cover more details needed for more complex
packages and details needed for distributing packages to other people.

The previous chapter covers building and installing packages – your own
packages or ones developed by other people.

3.2. Package concepts

Before diving into the details of writing packages it helps to
understand a bit about packages in the Haskell world and the particular
approach that Cabal takes.

3.2.1. The point of packages

Packages are a mechanism for organising and distributing code. Packages
are particularly suited for “programming in the large”, that is building
big systems by using and re-using code written by different people at
different times.

People organise code into packages based on functionality and
dependencies. Social factors are also important: most packages have a
single author, or a relatively small team of authors.

Packages are also used for distribution: the idea is that a package can
be created in one place and be moved to a different computer and be
usable in that different environment. There are a surprising number of
details that have to be got right for this to work, and a good package
system helps to simplify this process and make it reliable.

Packages come in two main flavours: libraries of reusable code, and
complete programs. Libraries present a code interface, an API, while
programs can be run directly. In the Haskell world, library packages
expose a set of Haskell modules as their public interface. Cabal
packages can contain a library or executables or both.

Some programming languages have packages as a builtin language concept.
For example in Java, a package provides a local namespace for types and
other definitions. In the Haskell world, packages are not a part of the
language itself. Haskell programs consist of a number of modules, and
packages just provide a way to partition the modules into sets of
related functionality. Thus the choice of module names in Haskell is
still important, even when using packages.

3.2.2. Package names and versions

All packages have a name, e.g. “HUnit”. Package names are assumed to be
unique. Cabal package names may contain letters, numbers and hyphens,
but not spaces and may also not contain a hyphened section consisting of
only numbers. The namespace for Cabal packages is flat, not
hierarchical.

Packages also have a version, e.g “1.1”. This matches the typical way in
which packages are developed. Strictly speaking, each version of a
package is independent, but usually they are very similar. Cabal package
versions follow the conventional numeric style, consisting of a sequence
of digits such as “1.0.1” or “2.0”. There are a range of common
conventions for “versioning” packages, that is giving some meaning to
the version number in terms of changes in the package, such as
e.g. SemVer [http://semver.org]; however, for packages intended to be
distributed via Hackage Haskell’s Package Versioning Policy [http://pvp.haskell.org/] applies
(see also the PVP/SemVer FAQ section [https://pvp.haskell.org/faq/#semver]).

The combination of package name and version is called the package ID
and is written with a hyphen to separate the name and version, e.g.
“HUnit-1.1”.

For Cabal packages, the combination of the package name and version
uniquely identifies each package. Or to put it another way: two
packages with the same name and version are considered to be the same.

Strictly speaking, the package ID only identifies each Cabal source
package; the same Cabal source package can be configured and built in
different ways. There is a separate installed package ID that uniquely
identifies each installed package instance. Most of the time however,
users need not be aware of this detail.

3.2.3. Kinds of package: Cabal vs GHC vs system

It can be slightly confusing at first because there are various
different notions of package floating around. Fortunately the details
are not very complicated.

	Cabal packages

	Cabal packages are really source packages. That is they contain
Haskell (and sometimes C) source code.

Cabal packages can be compiled to produce GHC packages. They can
also be translated into operating system packages.

	GHC packages

	This is GHC’s view on packages. GHC only cares about library
packages, not executables. Library packages have to be registered
with GHC for them to be available in GHCi or to be used when
compiling other programs or packages.

The low-level tool ghc-pkg is used to register GHC packages and
to get information on what packages are currently registered.

You never need to make GHC packages manually. When you build and
install a Cabal package containing a library then it gets registered
with GHC automatically.

Haskell implementations other than GHC have essentially the same
concept of registered packages. For the most part, Cabal hides the
slight differences.

	Operating system packages

	On operating systems like Linux and Mac OS X, the system has a
specific notion of a package and there are tools for installing and
managing packages.

The Cabal package format is designed to allow Cabal packages to be
translated, mostly-automatically, into operating system packages.
They are usually translated 1:1, that is a single Cabal package
becomes a single system package.

It is also possible to make Windows installers from Cabal packages,
though this is typically done for a program together with all of its
library dependencies, rather than packaging each library separately.

3.2.4. Unit of distribution

The Cabal package is the unit of distribution. What this means is that
each Cabal package can be distributed on its own in source or binary
form. Of course there may dependencies between packages, but there is
usually a degree of flexibility in which versions of packages can work
together so distributing them independently makes sense.

It is perhaps easiest to see what being “the unit of distribution”
means by contrast to an alternative approach. Many projects are made up
of several interdependent packages and during development these might
all be kept under one common directory tree and be built and tested
together. When it comes to distribution however, rather than
distributing them all together in a single tarball, it is required that
they each be distributed independently in their own tarballs.

Cabal’s approach is to say that if you can specify a dependency on a
package then that package should be able to be distributed
independently. Or to put it the other way round, if you want to
distribute it as a single unit, then it should be a single package.

3.2.5. Explicit dependencies and automatic package management

Cabal takes the approach that all packages dependencies are specified
explicitly and specified in a declarative way. The point is to enable
automatic package management. This means tools like cabal can
resolve dependencies and install a package plus all of its dependencies
automatically. Alternatively, it is possible to mechanically (or mostly
mechanically) translate Cabal packages into system packages and let the
system package manager install dependencies automatically.

It is important to track dependencies accurately so that packages can
reliably be moved from one system to another system and still be able to
build it there. Cabal is therefore relatively strict about specifying
dependencies. For example Cabal’s default build system will not even let
code build if it tries to import a module from a package that isn’t
listed in the .cabal file, even if that package is actually
installed. This helps to ensure that there are no “untracked
dependencies” that could cause the code to fail to build on some other
system.

The explicit dependency approach is in contrast to the traditional
“./configure” approach where instead of specifying dependencies
declaratively, the ./configure script checks if the dependencies are
present on the system. Some manual work is required to transform a
./configure based package into a Linux distribution package (or
similar). This conversion work is usually done by people other than the
package author(s). The practical effect of this is that only the most
popular packages will benefit from automatic package management.
Instead, Cabal forces the original author to specify the dependencies
but the advantage is that every package can benefit from automatic
package management.

The “./configure” approach tends to encourage packages that adapt
themselves to the environment in which they are built, for example by
disabling optional features so that they can continue to work when a
particular dependency is not available. This approach makes sense in a
world where installing additional dependencies is a tiresome manual
process and so minimising dependencies is important. The automatic
package management view is that packages should just declare what they
need and the package manager will take responsibility for ensuring that
all the dependencies are installed.

Sometimes of course optional features and optional dependencies do make
sense. Cabal packages can have optional features and varying
dependencies. These conditional dependencies are still specified in a
declarative way however and remain compatible with automatic package
management. The need to remain compatible with automatic package
management means that Cabal’s conditional dependencies system is a bit
less flexible than with the “./configure” approach.

Note

GNU autoconf places restrictions on paths, including the
path that the user builds a package from. [https://www.gnu.org/software/autoconf/manual/autoconf.html#File-System-Conventions]
Package authors using build-type: configure should be aware of
these restrictions; because users may be unexpectedly constrained and
face mysterious errors, it is recommended that build-type: configure
is only used where strictly necessary.

3.2.6. Portability

One of the purposes of Cabal is to make it easier to build packages on
different platforms (operating systems and CPU architectures), with
different compiler versions and indeed even with different Haskell
implementations. (Yes, there are Haskell implementations other than
GHC!)

Cabal provides abstractions of features present in different Haskell
implementations and wherever possible it is best to take advantage of
these to increase portability. Where necessary however it is possible to
use specific features of specific implementations.

For example a package author can list in the package’s .cabal what
language extensions the code uses. This allows Cabal to figure out if
the language extension is supported by the Haskell implementation that
the user picks. Additionally, certain language extensions such as
Template Haskell require special handling from the build system and by
listing the extension it provides the build system with enough
information to do the right thing.

Another similar example is linking with foreign libraries. Rather than
specifying GHC flags directly, the package author can list the libraries
that are needed and the build system will take care of using the right
flags for the compiler. Additionally this makes it easier for tools to
discover what system C libraries a package needs, which is useful for
tracking dependencies on system libraries (e.g. when translating into
Linux distribution packages).

In fact both of these examples fall into the category of explicitly
specifying dependencies. Not all dependencies are other Cabal packages.
Foreign libraries are clearly another kind of dependency. It’s also
possible to think of language extensions as dependencies: the package
depends on a Haskell implementation that supports all those extensions.

Where compiler-specific options are needed however, there is an “escape
hatch” available. The developer can specify implementation-specific
options and more generally there is a configuration mechanism to
customise many aspects of how a package is built depending on the
Haskell implementation, the operating system, computer architecture and
user-specified configuration flags.

3.3. Developing packages

The Cabal package is the unit of distribution. When installed, its
purpose is to make available:

	One or more Haskell programs.

	At most one library, exposing a number of Haskell modules.

However having both a library and executables in a package does not work
very well; if the executables depend on the library, they must
explicitly list all the modules they directly or indirectly import from
that library. Fortunately, starting with Cabal 1.8.0.4, executables can
also declare the package that they are in as a dependency, and Cabal
will treat them as if they were in another package that depended on the
library.

Internally, the package may consist of much more than a bunch of Haskell
modules: it may also have C source code and header files, source code
meant for preprocessing, documentation, test cases, auxiliary tools etc.

A package is identified by a globally-unique package name, which
consists of one or more alphanumeric words separated by hyphens. To
avoid ambiguity, each of these words should contain at least one letter.
Chaos will result if two distinct packages with the same name are
installed on the same system. A particular version of the package is
distinguished by a version number, consisting of a sequence of one or
more integers separated by dots. These can be combined to form a single
text string called the package ID, using a hyphen to separate the name
from the version, e.g. “HUnit-1.1”.

Note

Packages are not part of the Haskell language; they simply
populate the hierarchical space of module names. In GHC 6.6 and later a
program may contain multiple modules with the same name if they come
from separate packages; in all other current Haskell systems packages
may not overlap in the modules they provide, including hidden modules.

3.3.1. Creating a package

Suppose you have a directory hierarchy containing the source files that
make up your package. You will need to add two more files to the root
directory of the package:

	package-name.cabal

	a Unicode UTF-8 text file containing a package description. For
details of the syntax of this file, see the section on
package descriptions.

	Setup.hs

	a single-module Haskell program to perform various setup tasks (with
the interface described in the section on Building and installing packages).
This module should import only modules that will be present in all Haskell
implementations, including modules of the Cabal library. The content of
this file is determined by the build-type setting in the
.cabal file. In most cases it will be trivial, calling on the Cabal
library to do most of the work.

Once you have these, you can create a source bundle of this directory
for distribution. Building of the package is discussed in the section on
Building and installing packages.

One of the purposes of Cabal is to make it easier to build a package
with different Haskell implementations. So it provides abstractions of
features present in different Haskell implementations and wherever
possible it is best to take advantage of these to increase portability.
Where necessary however it is possible to use specific features of
specific implementations. For example one of the pieces of information a
package author can put in the package’s .cabal file is what language
extensions the code uses. This is far preferable to specifying flags for
a specific compiler as it allows Cabal to pick the right flags for the
Haskell implementation that the user picks. It also allows Cabal to
figure out if the language extension is even supported by the Haskell
implementation that the user picks. Where compiler-specific options are
needed however, there is an “escape hatch” available. The developer can
specify implementation-specific options and more generally there is a
configuration mechanism to customise many aspects of how a package is
built depending on the Haskell implementation, the Operating system,
computer architecture and user-specified configuration flags.

name: Foo
version: 1.0

library
 build-depends: base >= 4 && < 5
 exposed-modules: Foo
 extensions: ForeignFunctionInterface
 ghc-options: -Wall
 if os(windows)
 build-depends: Win32 >= 2.1 && < 2.6

3.3.1.1. Example: A package containing a simple library

The HUnit package contains a file HUnit.cabal containing:

name: HUnit
version: 1.1.1
synopsis: A unit testing framework for Haskell
homepage: http://hunit.sourceforge.net/
category: Testing
author: Dean Herington
license: BSD3
license-file: LICENSE
cabal-version: 1.12
build-type: Simple

library
 build-depends: base >= 2 && < 4
 exposed-modules: Test.HUnit.Base, Test.HUnit.Lang,
 Test.HUnit.Terminal, Test.HUnit.Text, Test.HUnit
 default-extensions: CPP

and the following Setup.hs:

import Distribution.Simple
main = defaultMain

3.3.1.2. Example: A package containing executable programs

name: TestPackage
version: 0.0
synopsis: Small package with two programs
author: Angela Author
license: BSD3
build-type: Simple
cabal-version: >= 1.8

executable program1
 build-depends: HUnit >= 1.1.1 && < 1.2
 main-is: Main.hs
 hs-source-dirs: prog1

executable program2
 main-is: Main.hs
 build-depends: HUnit >= 1.1.1 && < 1.2
 hs-source-dirs: prog2
 other-modules: Utils

with Setup.hs the same as above.

3.3.1.3. Example: A package containing a library and executable programs

name: TestPackage
version: 0.0
synopsis: Package with library and two programs
license: BSD3
author: Angela Author
build-type: Simple
cabal-version: >= 1.8

library
 build-depends: HUnit >= 1.1.1 && < 1.2
 exposed-modules: A, B, C

executable program1
 main-is: Main.hs
 hs-source-dirs: prog1
 other-modules: A, B

executable program2
 main-is: Main.hs
 hs-source-dirs: prog2
 other-modules: A, C, Utils

with Setup.hs the same as above. Note that any library modules
required (directly or indirectly) by an executable must be listed again.

The trivial setup script used in these examples uses the simple build
infrastructure provided by the Cabal library (see
Distribution.Simple).
The simplicity lies in its interface rather that its implementation. It
automatically handles preprocessing with standard preprocessors, and
builds packages for all the Haskell implementations.

The simple build infrastructure can also handle packages where building
is governed by system-dependent parameters, if you specify a little more
(see the section on system-dependent parameters).
A few packages require more elaborate solutions.

3.3.2. Package descriptions

The package description file must have a name ending in “.cabal”. It
must be a Unicode text file encoded using valid UTF-8. There must be
exactly one such file in the directory. The first part of the name is
usually the package name, and some of the tools that operate on Cabal
packages require this; specifically, Hackage rejects packages which
don’t follow this rule.

In the package description file, lines whose first non-whitespace
characters are “--” are treated as comments and ignored.

This file should contain of a number global property descriptions and
several sections.

	The package properties describe the package
as a whole, such as name, license, author, etc.

	Optionally, a number of configuration flags can be declared. These
can be used to enable or disable certain features of a package. (see
the section on configurations).

	The (optional) library section specifies the library properties and
relevant build information.

	Following is an arbitrary number of executable sections which describe
an executable program and relevant build information.

Each section consists of a number of property descriptions in the form
of field/value pairs, with a syntax roughly like mail message headers.

	Case is not significant in field names, but is significant in field
values.

	To continue a field value, indent the next line relative to the field
name.

	Field names may be indented, but all field values in the same section
must use the same indentation.

	Tabs are not allowed as indentation characters due to a missing
standard interpretation of tab width.

	Before Cabal 3.0, to get a blank line in a field value, use an indented “.”

The syntax of the value depends on the field. Field types include:

	token, filename, directory

	Either a sequence of one or more non-space non-comma characters, or
a quoted string in Haskell 98 lexical syntax. The latter can be used
for escaping whitespace, for example:
ghc-options: -Wall "-with-rtsopts=-T -I1". Unless otherwise
stated, relative filenames and directories are interpreted from the
package root directory.

	freeform, URL, address

	An arbitrary, uninterpreted string.

	identifier

	A letter followed by zero or more alphanumerics or underscores.

	compiler

	A compiler flavor (one of: GHC, UHC or LHC)
followed by a version range. For example, GHC ==6.10.3, or
LHC >=0.6 && <0.8.

3.3.2.1. Modules and preprocessors

Haskell module names listed in the library:exposed-modules and
library:other-modules fields may correspond to Haskell source
files, i.e. with names ending in “.hs” or “.lhs”, or to inputs for
various Haskell preprocessors. The simple build infrastructure understands the
extensions:

	.gc (greencard [http://hackage.haskell.org/package/greencard])

	.chs (c2hs [http://hackage.haskell.org/package/c2hs])

	.hsc (hsc2hs [http://hackage.haskell.org/package/hsc2hs])

	.y and .ly (happy [http://www.haskell.org/happy/])

	.x (alex [http://www.haskell.org/alex/])

	.cpphs (cpphs [http://projects.haskell.org/cpphs/])

When building, Cabal will automatically run the appropriate preprocessor
and compile the Haskell module it produces. For the c2hs and
hsc2hs preprocessors, Cabal will also automatically add, compile and
link any C sources generated by the preprocessor (produced by
hsc2hs’s #def feature or c2hs’s auto-generated wrapper
functions). Dependencies on pre-processors are specified via the
build-tools or build-tool-depends fields.

Some fields take lists of values, which are optionally separated by
commas, except for the build-depends field, where the commas are
mandatory.

Some fields are marked as required. All others are optional, and unless
otherwise specified have empty default values.

3.3.2.2. Package properties

These fields may occur in the first top-level properties section and
describe the package as a whole:

	
name: package-name (required)

	The unique name of the package, without the version number.

As pointed out in the section on package descriptions, some
tools require the package-name specified for this field to match
the package description’s file-name package-name.cabal.

Package names are case-sensitive and must match the regular expression
(i.e. alphanumeric “words” separated by dashes; each alphanumeric
word must contain at least one letter):
[[:digit:]]*[[:alpha:]][[:alnum:]]*(-[[:digit:]]*[[:alpha:]][[:alnum:]]*)*.

Or, expressed in ABNF [https://tools.ietf.org/html/rfc5234]:

package-name = package-name-part *("-" package-name-part)
package-name-part = *DIGIT UALPHA *UALNUM

UALNUM = UALPHA / DIGIT
UALPHA = ... ; set of alphabetic Unicode code-points

Note

Hackage restricts package names to the ASCII subset.

	
version: numbers (required)

	The package version number, usually consisting of a sequence of
natural numbers separated by dots, i.e. as the regular
expression [0-9]+([.][0-9]+)* or expressed in ABNF [https://tools.ietf.org/html/rfc5234]:

package-version = 1*DIGIT *("." 1*DIGIT)

	
cabal-version: x.y[.z]

	The version of the Cabal specification that this package
description uses. The Cabal specification does slowly evolve (see
also Package Description Format Specification History), introducing new features and
occasionally changing the meaning of existing features. By
specifying which version of the specification you are using it
enables programs which process the package description to know
what syntax to expect and what each part means.

The version number you specify will affect both compatibility and
behaviour. Most tools (including the Cabal library and the cabal
program) understand a range of versions of the Cabal specification.
Older tools will of course only work with older versions of the
Cabal specification that was known at the time. Most of the time,
tools that are too old will recognise this fact and produce a
suitable error message. Likewise, cabal check will tell you
whether the version number is sufficiently high for the features
you use in the package description.

As for behaviour, new versions of the Cabal specification can change the
meaning of existing syntax. This means if you want to take advantage
of the new meaning or behaviour then you must specify the newer
Cabal version. Tools are expected to use the meaning and behaviour
appropriate to the version given in the package description.

In particular, the syntax of package descriptions changed
significantly with Cabal version 1.2 and the cabal-version
field is now required. Files written in the old syntax are still
recognized, so if you require compatibility with very old Cabal
versions then you may write your package description file using the
old syntax. Please consult the user’s guide of an older Cabal
version for a description of that syntax.

Starting with cabal-version: 2.2 this field is only valid if
fully contained in the very first line of a package description
and ought to adhere to the ABNF [https://tools.ietf.org/html/rfc5234] grammar

newstyle-spec-version-decl = "cabal-version" *WS ":" *WS newstyle-spec-version *WS

newstyle-spec-version = NUM "." NUM ["." NUM]

NUM = DIGIT0 / DIGITP 1*DIGIT0
DIGIT0 = %x30-39
DIGITP = %x31-39
WS = %20

Note

For package descriptions using a format prior to
cabal-version: 1.12 the legacy syntax resembling a version
range syntax

cabal-version: >= 1.10

needs to be used.

This legacy syntax is supported up until cabal-version: >=
2.0 it is however strongly recommended to avoid using the
legacy syntax. See also #4899 [https://github.com/haskell/cabal/issues/4899].

	
build-type: identifier

	
	Default value

	Custom or Simple

The type of build used by this package. Build types are the
constructors of the
BuildType
type. This field is optional and when missing, its default value
is inferred according to the following rules:

	When cabal-version is set to 2.2 or higher,
the default is Simple unless a custom-setup
exists, in which case the inferred default is Custom.

	For lower cabal-version values, the default is
Custom unconditionally.

If the build type is anything other than Custom, then the
Setup.hs file must be exactly the standardized content
discussed below. This is because in these cases, cabal will
ignore the Setup.hs file completely, whereas other methods of
package management, such as runhaskell Setup.hs [CMD], still
rely on the Setup.hs file.

For build type Simple, the contents of Setup.hs must be:

import Distribution.Simple
main = defaultMain

For build type Configure (see the section on system-dependent
parameters below), the contents of
Setup.hs must be:

import Distribution.Simple
main = defaultMainWithHooks autoconfUserHooks

For build type Make (see the section on more complex packages below),
the contents of Setup.hs must be:

import Distribution.Make
main = defaultMain

For build type Custom, the file Setup.hs can be customized,
and will be used both by cabal and other tools.

For most packages, the build type Simple is sufficient.

	
license: SPDX expression

	
	Default value

	NONE

The type of license under which this package is distributed.

Starting with cabal-version: 2.2 the license field takes a
(case-sensitive) SPDX expression such as

license: Apache-2.0 AND (MIT OR GPL-2.0-or-later)

See SPDX IDs: How to use [https://spdx.org/ids-how] for more
examples of SPDX expressions.

The version of the
list of SPDX license identifiers [https://spdx.org/licenses/]
is a function of the cabal-version value as defined
in the following table:

	Cabal specification
version

	SPDX license list
version

	cabal-version: 2.2

	3.0 2017-12-28

	cabal-version: 2.4

	3.2 2018-07-10

Pre-SPDX Legacy Identifiers

The license identifier in the table below are defined for
cabal-version: 2.0 and previous versions of the Cabal
specification.

	license
identifier

	Note

	GPL
GPL-2
GPL-3

	

	LGPL
LGPL-2.1
LGPL-3

	

	AGPL
AGPL-3

	since 1.18

	BSD2

	since 1.20

	BSD3

	

	MIT

	

	ISC

	since 1.22

	MPL-2.0

	since 1.20

	Apache
Apache-2.0

	

	PublicDomain

	

	AllRightsReserved

	

	OtherLicense

	

	
license-file: filename

	See license-files.

	
license-files: filename list

	
	Since

	Cabal 1.20

The name of a file(s) containing the precise copyright license for
this package. The license file(s) will be installed with the
package.

If you have multiple license files then use the license-files
field instead of (or in addition to) the license-file field.

	
copyright: freeform

	The content of a copyright notice, typically the name of the holder
of the copyright on the package and the year(s) from which copyright
is claimed. For example:

copyright: (c) 2006-2007 Joe Bloggs

	
author: freeform

	The original author of the package.

Remember that .cabal files are Unicode, using the UTF-8
encoding.

	
maintainer: address

	The current maintainer or maintainers of the package. This is an
e-mail address to which users should send bug reports, feature
requests and patches.

	
stability: freeform

	The stability level of the package, e.g. alpha,
experimental, provisional, stable.

	
homepage: URL

	The package homepage.

	
bug-reports: URL

	The URL where users should direct bug reports. This would normally
be either:

	A mailto: URL, e.g. for a person or a mailing list.

	An http: (or https:) URL for an online bug tracking
system.

For example Cabal itself uses a web-based bug tracking system

bug-reports: https://github.com/haskell/cabal/issues

	
package-url: URL

	The location of a source bundle for the package. The distribution
should be a Cabal package.

	
synopsis: freeform

	A very short description of the package, for use in a table of
packages. This is your headline, so keep it short (one line) but as
informative as possible. Save space by not including the package
name or saying it’s written in Haskell.

	
description: freeform

	Description of the package. This may be several paragraphs, and
should be aimed at a Haskell programmer who has never heard of your
package before.

For library packages, this field is used as prologue text by
setup haddock and thus may contain the same markup as Haddock [http://www.haskell.org/haddock/]
documentation comments.

	
category: freeform

	A classification category for future use by the package catalogue
Hackage [http://hackage.haskell.org/]. These categories have not
yet been specified, but the upper levels of the module hierarchy
make a good start.

	
tested-with: compiler list

	A list of compilers and versions against which the package has been
tested (or at least built). The value of this field is not used by Cabal
and is rather intended as extra metadata for use by third party
tooling, such as e.g. CI tooling.

Here’s a typical usage example

tested-with: GHC == 8.6.3, GHC == 8.4.4, GHC == 8.2.2, GHC == 8.0.2,
 GHC == 7.10.3, GHC == 7.8.4, GHC == 7.6.3, GHC == 7.4.2

which can (starting with Cabal 3.0) also be written using the more
concise set notation syntax

tested-with: GHC == { 8.6.3, 8.4.4, 8.2.2, 8.0.2, 7.10.3, 7.8.4, 7.6.3, 7.4.2 }

	
data-files: filename list

	A list of files to be installed for run-time use by the package.
This is useful for packages that use a large amount of static data,
such as tables of values or code templates. Cabal provides a way to
find these files at run-time.

A limited form of * wildcards in file names, for example
data-files: images/*.png matches all the .png files in the
images directory. data-files: audio/**/*.mp3 matches all
the .mp3 files in the audio directory, including
subdirectories.

The specific limitations of this wildcard syntax are

	* wildcards are only allowed in place of the file name, not
in the directory name or file extension. It must replace the
whole file name (e.g., *.html is allowed, but
chapter-*.html is not). If a wildcard is used, it must be
used with an extension, so data-files: data/* is not
allowed.

	Prior to Cabal 2.4, when matching a wildcard plus extension, a
file’s full extension must match exactly, so *.gz matches
foo.gz but not foo.tar.gz. This restriction has been
lifted when cabal-version: 2.4 or greater so that *.gz
does match foo.tar.gz

	* wildcards will not match if the file name is empty (e.g.,
*.html will not match foo/.html).

	** wildcards can only appear as the final path component
before the file name (e.g., data/**/images/*.jpg is not
allowed). If a ** wildcard is used, then the file name must
include a * wildcard (e.g., data/**/README.rst is not
allowed).

	A wildcard that does not match any files is an error.

The reason for providing only a very limited form of wildcard is to
concisely express the common case of a large number of related files
of the same file type without making it too easy to accidentally
include unwanted files.

On efficiency: if you use ** patterns, the directory tree will
be walked starting with the parent directory of the **. If
that’s the root of the project, this might include .git/,
dist-newstyle/, or other large directories! To avoid this
behaviour, put the files that wildcards will match against in
their own folder.

** wildcards are available starting in Cabal 2.4.

	
data-dir: directory

	The directory where Cabal looks for data files to install, relative
to the source directory. By default, Cabal will look in the source
directory itself.

	
extra-source-files: filename list

	A list of additional files to be included in source distributions
built with setup sdist. As with data-files it can use
a limited form of * wildcards in file names.

	
extra-doc-files: filename list

	
	Since

	Cabal 1.18

A list of additional files to be included in source distributions,
and also copied to the html directory when Haddock documentation is
generated. As with data-files it can use a limited form of
* wildcards in file names.

	
extra-tmp-files: filename list

	A list of additional files or directories to be removed by
setup clean. These would typically be additional files created by
additional hooks, such as the scheme described in the section on
system-dependent parameters

3.3.2.3. Library

	
library name

	Build information for libraries.

Currently, there can only be one publicly exposed library in a
package, and its name is the same as package name set by global
name field. In this case, the name argument to
the library section must be omitted.

Starting with Cabal 2.0, private internal sub-library components
can be defined by using setting the name field to a name
different from the current package’s name; see section on
Internal Libraries for more information.

The library section should contain the following fields:

	
exposed-modules: identifier list

	
	Required

	if this package contains a library

A list of modules added by this package.

	
virtual-modules: identifier list

	
	Since

	Cabal 2.2

A list of virtual modules provided by this package. Virtual modules
are modules without a source file. See for example the GHC.Prim
module from the ghc-prim package. Modules listed here will not be
built, but still end up in the list of exposed-modules in the
installed package info when the package is registered in the package
database.

	
exposed: boolean

	
	Default value

	True

Some Haskell compilers (notably GHC) support the notion of packages
being “exposed” or “hidden” which means the modules they provide can
be easily imported without always having to specify which package
they come from. However this only works effectively if the modules
provided by all exposed packages do not overlap (otherwise a module
import would be ambiguous).

Almost all new libraries use hierarchical module names that do not
clash, so it is very uncommon to have to use this field. However it
may be necessary to set exposed: False for some old libraries
that use a flat module namespace or where it is known that the
exposed modules would clash with other common modules.

	
visibility: visibilty specifiers

	:since 3.0

	Default value

	private for internal libraries. Cannot be set for public library.

Cabal recognizes public and private here…

Multiple public libraries…

	
reexported-modules: exportlist

	
	Since

	Cabal 1.22

Supported only in GHC 7.10 and later. A list of modules to
reexport from this package. The syntax of this field is
orig-pkg:Name as NewName to reexport module Name from
orig-pkg with the new name NewName. We also support
abbreviated versions of the syntax: if you omit as NewName,
we’ll reexport without renaming; if you omit orig-pkg, then we
will automatically figure out which package to reexport from, if
it’s unambiguous.

Reexported modules are useful for compatibility shims when a package
has been split into multiple packages, and they have the useful
property that if a package provides a module, and another package
reexports it under the same name, these are not considered a
conflict (as would be the case with a stub module.) They can also be
used to resolve name conflicts.

	
signatures: signature list

	
	Since

	Cabal 2.0

Supported only in GHC 8.2 and later. A list of module signatures [https://downloads.haskell.org/~ghc/master/users-guide/separate_compilation.html#module-signatures] required by this package.

Module signatures are part of the Backpack [https://ghc.haskell.org/trac/ghc/wiki/Backpack] extension to
the Haskell module system.

Packages that do not export any modules and only export required signatures
are called “signature-only packages”, and their signatures are subjected to
signature thinning [https://wiki.haskell.org/Module_signature#How_to_use_a_signature_package].

The library section may also contain build information fields (see the
section on build information).

Internal Libraries

Cabal 2.0 and later support “internal libraries”, which are extra named
libraries (as opposed to the usual unnamed library section). For
example, suppose that your test suite needs access to some internal
modules in your library, which you do not otherwise want to export. You
could put these modules in an internal library, which the main library
and the test suite build-depends upon. Then your Cabal file might
look something like this:

cabal-version: 2.0
name: foo
version: 0.1.0.0
license: BSD3
build-type: Simple

library foo-internal
 exposed-modules: Foo.Internal
 -- NOTE: no explicit constraints on base needed
 -- as they're inherited from the 'library' stanza
 build-depends: base

library
 exposed-modules: Foo.Public
 build-depends: foo-internal, base >= 4.3 && < 5

test-suite test-foo
 type: exitcode-stdio-1.0
 main-is: test-foo.hs
 -- NOTE: no constraints on 'foo-internal' as same-package
 -- dependencies implicitly refer to the same package instance
 build-depends: foo-internal, base

Internal libraries are also useful for packages that define multiple
executables, but do not define a publicly accessible library. Internal
libraries are only visible internally in the package (so they can only
be added to the build-depends of same-package libraries,
executables, test suites, etc.) Internal libraries locally shadow any
packages which have the same name; consequently, don’t name an internal
library with the same name as an external dependency if you need to be
able to refer to the external dependency in a
build-depends declaration.

Shadowing can be used to vendor an external dependency into a package
and thus emulate private dependencies. Below is an example based on
a real-world use case:

cabal-version: 2.2
name: haddock-library
version: 1.6.0

library
 build-depends:
 , base ^>= 4.11.1.0
 , bytestring ^>= 0.10.2.0
 , containers ^>= 0.4.2.1 || ^>= 0.5.0.0
 , transformers ^>= 0.5.0.0

 hs-source-dirs: src

 -- internal sub-lib
 build-depends: attoparsec

 exposed-modules:
 Documentation.Haddock

library attoparsec
 build-depends:
 , base ^>= 4.11.1.0
 , bytestring ^>= 0.10.2.0
 , deepseq ^>= 1.4.0.0

 hs-source-dirs: vendor/attoparsec-0.13.1.0

 -- NB: haddock-library needs only small part of lib:attoparsec
 -- internally, so we only bundle that subset here
 exposed-modules:
 Data.Attoparsec.ByteString
 Data.Attoparsec.Combinator

 other-modules:
 Data.Attoparsec.Internal

 ghc-options: -funbox-strict-fields -Wall -fwarn-tabs -O2

3.3.2.4. Opening an interpreter session

While developing a package, it is often useful to make its code
available inside an interpreter session. This can be done with the
repl command:

$ cabal repl

The name comes from the acronym
REPL [http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop],
which stands for “read-eval-print-loop”. By default cabal repl loads
the first component in a package. If the package contains several named
components, the name can be given as an argument to repl. The name
can be also optionally prefixed with the component’s type for
disambiguation purposes. Example:

$ cabal repl foo
$ cabal repl exe:foo
$ cabal repl test:bar
$ cabal repl bench:baz

3.3.2.4.1. Freezing dependency versions

If a package is built in several different environments, such as a
development environment, a staging environment and a production
environment, it may be necessary or desirable to ensure that the same
dependency versions are selected in each environment. This can be done
with the freeze command:

$ cabal freeze

The command writes the selected version for all dependencies to the
cabal.config file. All environments which share this file will use
the dependency versions specified in it.

3.3.2.4.2. Generating dependency version bounds

Cabal also has the ability to suggest dependency version bounds that
conform to Package Versioning Policy [http://pvp.haskell.org/], which is
a recommended versioning system for publicly released Cabal packages.
This is done by running the gen-bounds command:

$ cabal gen-bounds

For example, given the following dependencies specified in
build-depends:

build-depends:
 foo == 0.5.2
 bar == 1.1

gen-bounds will suggest changing them to the following:

build-depends:
 foo >= 0.5.2 && < 0.6
 bar >= 1.1 && < 1.2

3.3.2.4.3. Listing outdated dependency version bounds

Manually updating dependency version bounds in a .cabal file or a
freeze file can be tedious, especially when there’s a lot of
dependencies. The cabal outdated command is designed to help with
that. It will print a list of packages for which there is a new
version on Hackage that is outside the version bound specified in the
build-depends field. The outdated command can also be
configured to act on the freeze file (both old- and v2-style) and
ignore major (or all) version bumps on Hackage for a subset of
dependencies.

The following flags are supported by the outdated command:

	--freeze-file

	Read dependency version bounds from the freeze file (cabal.config)
instead of the package description file ($PACKAGENAME.cabal).
--v1-freeze-file is an alias for this flag starting in Cabal 2.4.

	--v2-freeze-file

	
	since

	2.4

Read dependency version bounds from the v2-style freeze file
(by default, cabal.project.freeze) instead of the package
description file. --new-freeze-file is an alias for this flag
that can be used with pre-2.4 cabal.

	--project-file PROJECTFILE

	
	since

	2.4

Read dependendency version bounds from the v2-style freeze file
related to the named project file (i.e., $PROJECTFILE.freeze)
instead of the package desctription file. If multiple --project-file
flags are provided, only the final one is considered. This flag
must only be passed in when --new-freeze-file is present.

	--simple-output

	Print only the names of outdated dependencies, one per line.

	--exit-code

	Exit with a non-zero exit code when there are outdated dependencies.

	-q, --quiet

	Don’t print any output. Implies -v0 and --exit-code.

	--ignore PACKAGENAMES

	Don’t warn about outdated dependency version bounds for the packages in this
list.

	--minor [PACKAGENAMES]

	Ignore major version bumps for these packages. E.g. if there’s a version 2.0
of a package pkg on Hackage and the freeze file specifies the constraint
pkg == 1.9, cabal outdated --freeze --minor=pkg will only consider
the pkg outdated when there’s a version of pkg on Hackage satisfying
pkg > 1.9 && < 2.0. --minor can also be used without arguments, in
that case major version bumps are ignored for all packages.

Examples:

$ cd /some/package
$ cabal outdated
Outdated dependencies:
haskell-src-exts <1.17 (latest: 1.19.1)
language-javascript <0.6 (latest: 0.6.0.9)
unix ==2.7.2.0 (latest: 2.7.2.1)

$ cabal outdated --simple-output
haskell-src-exts
language-javascript
unix

$ cabal outdated --ignore=haskell-src-exts
Outdated dependencies:
language-javascript <0.6 (latest: 0.6.0.9)
unix ==2.7.2.0 (latest: 2.7.2.1)

$ cabal outdated --ignore=haskell-src-exts,language-javascript,unix
All dependencies are up to date.

$ cabal outdated --ignore=haskell-src-exts,language-javascript,unix -q
$ echo $?
0

$ cd /some/other/package
$ cabal outdated --freeze-file
Outdated dependencies:
HTTP ==4000.3.3 (latest: 4000.3.4)
HUnit ==1.3.1.1 (latest: 1.5.0.0)

$ cabal outdated --freeze-file --ignore=HTTP --minor=HUnit
Outdated dependencies:
HUnit ==1.3.1.1 (latest: 1.3.1.2)

3.3.2.5. Executables

	
executable name

	Executable sections (if present) describe executable programs contained
in the package and must have an argument after the section label, which
defines the name of the executable. This is a freeform argument but may
not contain spaces.

The executable may be described using the following fields, as well as
build information fields (see the section on build information).

	
main-is: filename (required)

	The name of the .hs or .lhs file containing the Main
module. Note that it is the .hs filename that must be listed,
even if that file is generated using a preprocessor. The source file
must be relative to one of the directories listed in
hs-source-dirs. Further, while the name of the file may
vary, the module itself must be named Main.

Starting with cabal-version: 1.18 this field supports
specifying a C, C++, or objC source file as the main entry point.

	
scope: token

	
	Since

	Cabal 2.0

Whether the executable is public (default) or private, i.e. meant to
be run by other programs rather than the user. Private executables are
installed into $libexecdir/$libexecsubdir.

3.3.2.5.1. Running executables

You can have Cabal build and run your executables by using the run
command:

$ cabal run EXECUTABLE [-- EXECUTABLE_FLAGS]

This command will configure, build and run the executable
EXECUTABLE. The double dash separator is required to distinguish
executable flags from run’s own flags. If there is only one
executable defined in the whole package, the executable’s name can be
omitted. See the output of cabal help run for a list of options you
can pass to cabal run.

3.3.2.6. Test suites

	
test-suite name

	Test suite sections (if present) describe package test suites and must
have an argument after the section label, which defines the name of the
test suite. This is a freeform argument, but may not contain spaces. It
should be unique among the names of the package’s other test suites, the
package’s executables, and the package itself. Using test suite sections
requires at least Cabal version 1.9.2.

The test suite may be described using the following fields, as well as
build information fields (see the section on build information).

	
type: interface (required)

	The interface type and version of the test suite. Cabal supports two
test suite interfaces, called exitcode-stdio-1.0 and
detailed-0.9. Each of these types may require or disallow other
fields as described below.

Test suites using the exitcode-stdio-1.0 interface are executables
that indicate test failure with a non-zero exit code when run; they may
provide human-readable log information through the standard output and
error channels. The exitcode-stdio-1.0 type requires the main-is
field.

	
main-is: filename

	
	Required

	exitcode-stdio-1.0

	Disallowed

	detailed-0.9

The name of the .hs or .lhs file containing the Main
module. Note that it is the .hs filename that must be listed,
even if that file is generated using a preprocessor. The source file
must be relative to one of the directories listed in
hs-source-dirs. This field is analogous to the main-is field
of an executable section.

Test suites using the detailed-0.9 interface are modules exporting
the symbol tests :: IO [Test]. The Test type is exported by the
module Distribution.TestSuite provided by Cabal. For more details,
see the example below.

The detailed-0.9 interface allows Cabal and other test agents to
inspect a test suite’s results case by case, producing detailed human-
and machine-readable log files. The detailed-0.9 interface requires
the test-module field.

	
test-module: identifier

	
	Required

	detailed-0.9

	Disallowed

	exitcode-stdio-1.0

The module exporting the tests symbol.

3.3.2.6.1. Example: Package using exitcode-stdio-1.0 interface

The example package description and executable source file below
demonstrate the use of the exitcode-stdio-1.0 interface.

foo.cabal

Name: foo
Version: 1.0
License: BSD3
Cabal-Version: >= 1.9.2
Build-Type: Simple

Test-Suite test-foo
 type: exitcode-stdio-1.0
 main-is: test-foo.hs
 build-depends: base >= 4 && < 5

test-foo.hs

module Main where

import System.Exit (exitFailure)

main = do
 putStrLn "This test always fails!"
 exitFailure

3.3.2.6.2. Example: Package using detailed-0.9 interface

The example package description and test module source file below
demonstrate the use of the detailed-0.9 interface. The test module
also develops a simple implementation of the interface set by
Distribution.TestSuite, but in actual usage the implementation would
be provided by the library that provides the testing facility.

bar.cabal

Name: bar
Version: 1.0
License: BSD3
Cabal-Version: >= 1.9.2
Build-Type: Simple

Test-Suite test-bar
 type: detailed-0.9
 test-module: Bar
 build-depends: base >= 4 && < 5, Cabal >= 1.9.2 && < 2

Bar.hs

module Bar (tests) where

import Distribution.TestSuite

tests :: IO [Test]
tests = return [Test succeeds, Test fails]
 where
 succeeds = TestInstance
 { run = return $ Finished Pass
 , name = "succeeds"
 , tags = []
 , options = []
 , setOption = _ _ -> Right succeeds
 }
 fails = TestInstance
 { run = return $ Finished $ Fail "Always fails!"
 , name = "fails"
 , tags = []
 , options = []
 , setOption = _ _ -> Right fails
 }

3.3.2.6.3. Running test suites

You can have Cabal run your test suites using its built-in test runner:

$ cabal configure --enable-tests
$ cabal build
$ cabal test

See the output of cabal help test for a list of options you can pass
to cabal test.

3.3.2.7. Benchmarks

	
benchmark name

	
	Since

	Cabal 1.9.2

Benchmark sections (if present) describe benchmarks contained in the
package and must have an argument after the section label, which defines
the name of the benchmark. This is a freeform argument, but may not
contain spaces. It should be unique among the names of the package’s
other benchmarks, the package’s test suites, the package’s executables,
and the package itself. Using benchmark sections requires at least Cabal
version 1.9.2.

The benchmark may be described using the following fields, as well as
build information fields (see the section on build information).

	
type: interface (required)

	The interface type and version of the benchmark. At the moment Cabal
only support one benchmark interface, called exitcode-stdio-1.0.

Benchmarks using the exitcode-stdio-1.0 interface are executables
that indicate failure to run the benchmark with a non-zero exit code
when run; they may provide human-readable information through the
standard output and error channels.

	
main-is: filename

	
	Required

	exitcode-stdio-1.0

The name of the .hs or .lhs file containing the Main
module. Note that it is the .hs filename that must be listed,
even if that file is generated using a preprocessor. The source file
must be relative to one of the directories listed in
hs-source-dirs. This field is analogous to the main-is
field of an executable section. Further, while the name of the file may
vary, the module itself must be named Main.

3.3.2.7.1. Example: Package using exitcode-stdio-1.0 interface

The example package description and executable source file below
demonstrate the use of the exitcode-stdio-1.0 interface.

foo.cabal

Name: foo
Version: 1.0
License: BSD3
Cabal-Version: >= 1.9.2
Build-Type: Simple

Benchmark bench-foo
 type: exitcode-stdio-1.0
 main-is: bench-foo.hs
 build-depends: base >= 4 && < 5, time >= 1.1 && < 1.7

bench-foo.hs

{-# LANGUAGE BangPatterns #-}
module Main where

import Data.Time.Clock

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

main = do
 start <- getCurrentTime
 let !r = fib 20
 end <- getCurrentTime
 putStrLn $ "fib 20 took " ++ show (diffUTCTime end start)

3.3.2.7.2. Running benchmarks

You can have Cabal run your benchmark using its built-in benchmark
runner:

$ cabal configure --enable-benchmarks
$ cabal build
$ cabal bench

See the output of cabal help bench for a list of options you can
pass to cabal bench.

3.3.2.8. Foreign libraries

Foreign libraries are system libraries intended to be linked against
programs written in C or other “foreign” languages. They
come in two primary flavours: dynamic libraries (.so files on Linux,
.dylib files on OSX, .dll files on Windows, etc.) are linked against
executables when the executable is run (or even lazily during
execution), while static libraries (.a files on Linux/OSX, .lib
files on Windows) get linked against the executable at compile time.

Foreign libraries only work with GHC 7.8 and later.

A typical stanza for a foreign library looks like

foreign-library myforeignlib
 type: native-shared
 lib-version-info: 6:3:2

 if os(Windows)
 options: standalone
 mod-def-file: MyForeignLib.def

 other-modules: MyForeignLib.SomeModule
 MyForeignLib.SomeOtherModule
 build-depends: base >=4.7 && <4.9
 hs-source-dirs: src
 c-sources: csrc/MyForeignLibWrapper.c
 default-language: Haskell2010

	
foreign-library name

	
	Since

	Cabal 2.0

Build information for foreign libraries.

	
type: foreign library type

	Cabal recognizes native-static and native-shared here, although
we currently only support building native-shared libraries.

	
options: foreign library option list

	Options for building the foreign library, typically specific to the
specified type of foreign library. Currently we only support
standalone here. A standalone dynamic library is one that does not
have any dependencies on other (Haskell) shared libraries; without
the standalone option the generated library would have dependencies
on the Haskell runtime library (libHSrts), the base library
(libHSbase), etc. Currently, standalone must be used on Windows
and must not be used on any other platform.

	
mod-def-file: filename

	This option can only be used when creating dynamic Windows libraries
(that is, when using native-shared and the os is Windows). If
used, it must be a path to a module definition file. The details of
module definition files are beyond the scope of this document; see the
GHC [https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/win32-dlls.html]
manual for some details and some further pointers.

	
lib-version-info: current:revision:age

	This field is currently only used on Linux.

This field specifies a Libtool-style version-info field that sets
an appropriate ABI version for the foreign library. Note that the
three numbers specified in this field do not directly specify the
actual ABI version: 6:3:2 results in library version 4.2.3.

With this field set, the SONAME of the library is set, and symlinks
are installed.

How you should bump this field on an ABI change depends on the
breakage you introduce:

	Programs using the previous version may use the new version as
drop-in replacement, and programs using the new version can also
work with the previous one. In other words, no recompiling nor
relinking is needed. In this case, bump revision only, don’t
touch current nor age.

	Programs using the previous version may use the new version as
drop-in replacement, but programs using the new version may use
APIs not present in the previous one. In other words, a program
linking against the new version may fail with “unresolved
symbols” if linking against the old version at runtime: set
revision to 0, bump current and age.

	Programs may need to be changed, recompiled, and relinked in
order to use the new version. Bump current, set revision and age
to 0.

Also refer to the Libtool documentation on the version-info field.

	
lib-version-linux: version

	This field is only used on Linux.

Specifies the library ABI version directly for foreign libraries
built on Linux: so specifying 4.2.3 causes a library
libfoo.so.4.2.3 to be built with SONAME libfoo.so.4, and
appropriate symlinks libfoo.so.4 and libfoo.so to be
installed.

Note that typically foreign libraries should export a way to initialize
and shutdown the Haskell runtime. In the example above, this is done by
the csrc/MyForeignLibWrapper.c file, which might look something like

#include <stdlib.h>
#include "HsFFI.h"

HsBool myForeignLibInit(void){
 int argc = 2;
 char *argv[] = { "+RTS", "-A32m", NULL };
 char **pargv = argv;

 // Initialize Haskell runtime
 hs_init(&argc, &pargv);

 // do any other initialization here and
 // return false if there was a problem
 return HS_BOOL_TRUE;
}

void myForeignLibExit(void){
 hs_exit();
}

With modern ghc regular libraries are installed in directories that contain
package keys. This isn’t usually a problem because the package gets registered
in ghc’s package DB and so we can figure out what the location of the library
is. Foreign libraries however don’t get registered, which means that we’d have
to have a way of finding out where a platform library got installed (other than by
searching the lib/ directory). Instead, we install foreign libraries in
~/.cabal/lib, much like we install executables in ~/.cabal/bin.

3.3.2.9. Build information

The following fields may be optionally present in a library, executable,
test suite or benchmark section, and give information for the building
of the corresponding library or executable. See also the sections on
system-dependent parameters and configurations for a way to supply
system-dependent values for these fields.

	
build-depends: library list

	Declares the library dependencies required to build the current
package component; see build-tool-depends for
declaring build-time tool dependencies. External library
dependencies should be annotated with a version constraint.

Library Names

External libraries are identified by the package’s name they’re
provided by (currently a package can only publicly expose its
main library compeonent; in future, packages with multiple exposed
public library components will be supported and a syntax for
referring to public sub-libraries will be provided).

In order to specify an intra-package dependency on an internal
library component you can use the unqualified name of the
component library component. Note that locally defined sub-library
names shadow external package names of the same name. See section on
Internal Libraries for examples and more information.

Version Constraints

Version constraints use the operators ==, >=, >, <, <= and a
version number. Multiple constraints can be combined using && or
||. If no version constraint is specified, any version is
assumed to be acceptable. For example:

library
 build-depends:
 base >= 2,
 foo >= 1.2.3 && < 1.3,
 bar

Dependencies like foo >= 1.2.3 && < 1.3 turn out to be very
common because it is recommended practise for package versions to
correspond to API versions (see PVP [http://pvp.haskell.org/]).

Since Cabal 1.6, there is a special wildcard syntax to help with
such ranges

build-depends: foo ==1.2.*

It is only syntactic sugar. It is exactly equivalent to
foo >= 1.2 && < 1.3.

Warning

A potential pitfall of the wildcard syntax is that the
constraint nats == 1.0.* doesn’t match the release
nats-1 because the version 1 is lexicographically less
than 1.0. This is not an issue with the caret-operator
^>= described below.

Starting with Cabal 2.0, there’s a new version operator to express
PVP [http://pvp.haskell.org/]-style major upper bounds conveniently, and is inspired by similar
syntactic sugar found in other language ecosystems where it’s often
called the “Caret” operator:

build-depends:
 foo ^>= 1.2.3.4,
 bar ^>= 1

This allows to assert the positive knowledge that this package is
known to be semantically compatible with the releases
foo-1.2.3.4 and bar-1 respectively. The information
encoded via such ^>=-assertions is used by the cabal solver to
infer version constraints describing semantically compatible
version ranges according to the PVP [http://pvp.haskell.org/] contract (see below).

Another way to say this is that foo < 1.3 expresses negative
information, i.e. “foo-1.3 or foo-1.4.2 will not be
compatible”; whereas foo ^>= 1.2.3.4 asserts the positive
information that “foo-1.2.3.4 is known to be compatible” and (in
the absence of additional information) according to the PVP [http://pvp.haskell.org/]
contract we can (positively) infer right away that all versions
satisfying foo >= 1.2.3.4 && < 1.3 will be compatible as well.

Note

More generally, the PVP [http://pvp.haskell.org/] contract implies that we can safely
relax the lower bound to >= 1.2, because if we know that
foo-1.2.3.4 is semantically compatible, then so is
foo-1.2 (if it typechecks). But we’d need to perform
additional static analysis (i.e. perform typechecking) in order
to know if our package in the role of an API consumer will
successfully typecheck against the dependency foo-1.2. But
since we cannot do this analysis during constraint solving and
to keep things simple, we pragmatically use foo >= 1.2.3.4
as the initially inferred approximation for the lower bound
resulting from the assertion foo ^>= 1.2.3.4. If further
evidence becomes available that e.g. foo-1.2 typechecks,
one can simply revise the dependency specification to include
the assertion foo ^>= 1.2.

The subtle but important difference in signaling allows tooling to
treat explicitly expressed <-style constraints and inferred
(^>=-style) upper bounds differently. For instance,
--allow-newer’s ^-modifier allows to relax only
^>=-style bounds while leaving explicitly stated
<-constraints unaffected.

Ignoring the signaling intent, the default syntactic desugaring rules are

	^>= x == >= x && < x.1

	^>= x.y == >= x.y && < x.(y+1)

	^>= x.y.z == >= x.y.z && < x.(y+1)

	^>= x.y.z.u == >= x.y.z.u && < x.(y+1)

	etc.

Note

One might expected the desugaring to truncate all version
components below (and including) the patch-level, i.e.
^>= x.y.z.u == >= x.y.z && < x.(y+1),
as the major and minor version components alone are supposed to
uniquely identify the API according to the PVP [http://pvp.haskell.org/]. However, by
designing ^>= to be closer to the >= operator, we avoid
the potentially confusing effect of ^>= being more liberal
than >= in the presence of patch-level versions.

Consequently, the example declaration above is equivalent to

build-depends:
 foo >= 1.2.3.4 && < 1.3,
 bar >= 1 && < 1.1

Note

Prior to Cabal 1.8, build-depends specified in each
section were global to all sections. This was unintentional, but
some packages were written to depend on it, so if you need your
build-depends to be local to each section, you must specify
at least Cabal-Version: >= 1.8 in your .cabal file.

Note

Cabal 1.20 experimentally supported module thinning and
renaming in build-depends; however, this support has since been
removed and should not be used.

Starting with Cabal 3.0, a set notation for the == and ^>= operator
is available. For instance,

tested-with: GHC == 8.6.3, GHC == 8.4.4, GHC == 8.2.2, GHC == 8.0.2,
 GHC == 7.10.3, GHC == 7.8.4, GHC == 7.6.3, GHC == 7.4.2

build-depends: network ^>= 2.6.3.6 || ^>= 2.7.0.2 || ^>= 2.8.0.0 || ^>= 3.0.1.0

can be then written in a more convenient and concise form

tested-with: GHC == { 8.6.3, 8.4.4, 8.2.2, 8.0.2, 7.10.3, 7.8.4, 7.6.3, 7.4.2 }

build-depends: network ^>= { 2.6.3.6, 2.7.0.2, 2.8.0.0, 3.0.1.0 }

	
other-modules: identifier list

	A list of modules used by the component but not exposed to users.
For a library component, these would be hidden modules of the
library. For an executable, these would be auxiliary modules to be
linked with the file named in the main-is field.

Note

Every module in the package must be listed in one of
other-modules, library:exposed-modules or
executable:main-is fields.

	
hs-source-dirs: directory list

	
	Default value

	.

Root directories for the module hierarchy.

Note

Components can share source directories but modules found there will be
recompiled even if other components already built them, i.e., if a
library and an executable share a source directory and the executable
depends on the library and imports its Foo module, Foo will be
compiled twice, once as part of the library and again for the executable.

	
default-extensions: identifier list

	A list of Haskell extensions used by every module. These determine
corresponding compiler options enabled for all files. Extension
names are the constructors of the
Extension
type. For example, CPP specifies that Haskell source files are
to be preprocessed with a C preprocessor.

	
other-extensions: identifier list

	A list of Haskell extensions used by some (but not necessarily all)
modules. From GHC version 6.6 onward, these may be specified by
placing a LANGUAGE pragma in the source files affected e.g.

{-# LANGUAGE CPP, MultiParamTypeClasses #-}

In Cabal-1.24 the dependency solver will use this and
default-extensions information. Cabal prior to 1.24 will abort
compilation if the current compiler doesn’t provide the extensions.

If you use some extensions conditionally, using CPP or conditional
module lists, it is good to replicate the condition in
other-extensions declarations:

other-extensions: CPP
if impl(ghc >= 7.5)
 other-extensions: PolyKinds

You could also omit the conditionally used extensions, as they are
for information only, but it is recommended to replicate them in
other-extensions declarations.

	
extensions: identifier list

	
	Removed

	Cabal 3.0

	Deprecated

	Cabal 1.12

Deprecated in favor of default-extensions.

	
build-tool-depends: package:executable list

	
	Since

	Cabal 2.0

A list of Haskell executables needed to build this component. Executables are provided
during the whole duration of the component, so this field can be used for executables
needed during test-suite as well.

Each is specified by the package containing the executable and the name of the
executable itself, separated by a colon, and optionally followed by a version bound.

All executables defined in the given Cabal file are termed as internal dependencies
as opposed to the rest which are external dependencies.

Each of the two is handled differently:

	External dependencies can (and should) contain a version bound like conventional
build-depends dependencies.

	Internal depenedencies should not contain a version bound, as they will be always
resolved within the same configuration of the package in the build plan.
Specifically, version bounds that include the package’s version will be warned for
being extraneous, and version bounds that exclude the package’s version will raise
an error for being impossible to follow.

For example (1) using a test-suite to make sure README.md Haskell snippets are tested using
markdown-unlit [http://hackage.haskell.org/package/markdown-unlit]:

build-tool-depends: markdown-unlit:markdown-unlit >= 0.5.0 && < 0.6

For example (2) using a test-suite to test executable behaviour in the same package:

build-tool-depends: mypackage:executable

Cabal tries to make sure that all specified programs are atomically built and prepended
on the $PATH shell variable before building the component in question, but can only do
so for Nix-style builds. Specifically:

	For Nix-style local builds, both internal and external dependencies.

	For old-style builds, only for internal dependencies 1.
It’s up to the user to provide needed executables in this case under $PATH.

Note

build-tool-depends was added in Cabal 2.0, and it will
be ignored (with a warning) with old versions of Cabal. See
build-tools for more information about backwards
compatibility.

	
build-tools: program list

	
	Removed

	Cabal 3.0

	Deprecated

	Cabal 2.0

Deprecated in favor of build-tool-depends, but see below for backwards compatibility information.

A list of Haskell programs needed to build this component.
Each may be followed by an optional version bound.
Confusingly, each program in the list either refer to one of three things:

	Another executables in the same package (supported since Cabal 1.12)

	Tool name contained in Cabal’s hard-coded set of common tools

	A pre-built executable that should already be on the PATH
(supported since Cabal 2.0)

These cases are listed in order of priority:
an executable in the package will override any of the hard-coded packages with the same name,
and a hard-coded package will override any executable on the PATH.

In the first two cases, the list entry is desugared into a build-tool-depends entry.
In the first case, the entry is desugared into a build-tool-depends entry by prefixing with $pkg:.
In the second case, it is desugared by looking up the package and executable name in a hard-coded table.
In either case, the optional version bound is passed through unchanged.
Refer to the documentation for build-tool-depends to understand the desugared field’s meaning, along with restrictions on version bounds.

Backward Compatibility

Although this field is deprecated in favor of build-tool-depends, there are some situations where you may prefer to use build-tools in cases (1) and (2), as it is supported by more versions of Cabal.
In case (3), build-tool-depends is better for backwards-compatibility, as it will be ignored by old versions of Cabal; if you add the executable to build-tools, a setup script built against old Cabal will choke.
If an old version of Cabal is used, an end-user will have to manually arrange for the requested executable to be in your PATH.

Set of Known Tool Names

Identifiers specified in build-tools are desugared into their respective equivalent build-tool-depends form according to the table below. Consequently, a legacy specification such as:

build-tools: alex >= 3.2.1 && < 3.3, happy >= 1.19.5 && < 1.20

is simply desugared into the equivalent specification:

build-tool-depends: alex:alex >= 3.2.1 && < 3.3, happy:happy >= 1.19.5 && < 1.20

	build-tools
identifier

	desugared
build-tool-depends
identifier

	Note

	alex

	alex:alex

	

	c2hs

	c2hs:c2hs

	

	cpphs

	cpphs:cpphs

	

	greencard

	greencard:greencard

	

	haddock

	haddock:haddock

	

	happy

	happy:happy

	

	hsc2hs

	hsc2hs:hsc2hs

	

	hscolour

	hscolour:hscolour

	

	hspec-discover

	hspec-discover:hspec-discover

	since Cabal 2.0

This built-in set can be programmatically extended via Custom setup scripts; this, however, is of limited use since the Cabal solver cannot access information injected by Custom setup scripts.

	
buildable: boolean

	
	Default value

	True

Is the component buildable? Like some of the other fields below,
this field is more useful with the slightly more elaborate form of
the simple build infrastructure described in the section on
system-dependent parameters.

	
ghc-options: token list

	Additional options for GHC. You can often achieve the same effect
using the extensions field, which is preferred.

Options required only by one module may be specified by placing an
OPTIONS_GHC pragma in the source file affected.

As with many other fields, whitespace can be escaped by using
Haskell string syntax. Example:
ghc-options: -Wcompat "-with-rtsopts=-T -I1" -Wall.

	
ghc-prof-options: token list

	Additional options for GHC when the package is built with profiling
enabled.

Note that as of Cabal-1.24, the default profiling detail level
defaults to exported-functions for libraries and
toplevel-functions for executables. For GHC these correspond to
the flags -fprof-auto-exported and -fprof-auto-top. Prior to
Cabal-1.24 the level defaulted to none. These levels can be
adjusted by the person building the package with the
--profiling-detail and --library-profiling-detail flags.

It is typically better for the person building the package to pick
the profiling detail level rather than for the package author. So
unless you have special needs it is probably better not to specify
any of the GHC -fprof-auto* flags here. However if you wish to
override the profiling detail level, you can do so using the
ghc-prof-options field: use -fno-prof-auto or one of the
other -fprof-auto* flags.

	
ghc-shared-options: token list

	Additional options for GHC when the package is built as shared
library. The options specified via this field are combined with the
ones specified via ghc-options, and are passed to GHC during
both the compile and link phases.

	
includes: filename list

	A list of header files to be included in any compilations via C.
This field applies to both header files that are already installed
on the system and to those coming with the package to be installed.
The former files should be found in absolute paths, while the latter
files should be found in paths relative to the top of the source
tree or relative to one of the directories listed in
include-dirs.

These files typically contain function prototypes for foreign
imports used by the package. This is in contrast to
install-includes, which lists header files that are intended
to be exposed to other packages that transitively depend on this
library.

	
install-includes: filename list

	A list of header files from this package to be installed into
$libdir/includes when the package is installed. Files listed in
install-includes should be found in relative to the top of the
source tree or relative to one of the directories listed in
include-dirs.

install-includes is typically used to name header files that
contain prototypes for foreign imports used in Haskell code in this
package, for which the C implementations are also provided with the
package. For example, here is a .cabal file for a hypothetical
bindings-clib package that bundles the C source code for clib:

include-dirs: cbits
c-sources: clib.c
install-includes: clib.h

Now any package that depends (directly or transitively) on the
bindings-clib library can use clib.h.

Note that in order for files listed in install-includes to be
usable when compiling the package itself, they need to be listed in
the includes field as well.

	
include-dirs: directory list

	A list of directories to search for header files, when preprocessing
with c2hs, hsc2hs, cpphs or the C preprocessor, and also
when compiling via C. Directories can be absolute paths (e.g., for
system directories) or paths that are relative to the top of the
source tree. Cabal looks in these directories when attempting to
locate files listed in includes and
install-includes.

	
c-sources: filename list

	A list of C source files to be compiled and linked with the Haskell
files.

	
cxx-sources: filename list

	
	Since

	Cabal 2.2

A list of C++ source files to be compiled and linked with the Haskell
files. Useful for segregating C and C++ sources when supplying different
command-line arguments to the compiler via the cc-options
and the cxx-options fields. The files listed in the
cxx-sources can reference files listed in the
c-sources field and vice-versa. The object files will be linked
appropriately.

	
asm-sources: filename list

	
	Since

	Cabal 3.0

A list of assembly source files to be compiled and linked with the
Haskell files.

	
cmm-sources: filename list

	
	Since

	Cabal 3.0

A list of C– source files to be compiled and linked with the Haskell
files.

	
js-sources: filename list

	A list of JavaScript source files to be linked with the Haskell
files (only for JavaScript targets).

	
extra-libraries: token list

	A list of extra libraries to link with.

	
extra-ghci-libraries: token list

	A list of extra libraries to be used instead of ‘extra-libraries’
when the package is loaded with GHCi.

	
extra-bundled-libraries: token list

	
	Since

	Cabal 2.2

A list of libraries that are supposed to be copied from the build
directory alongside the produced Haskell libraries. Note that you
are under the obligation to produce those libraries in the build
directory (e.g. via a custom setup). Libraries listed here will
be included when copy-ing packages and be listed in the
hs-libraries of the package configuration in the package database.
Library names must either be prefixed with “HS” or “C” and corresponding
library file names must match:

	
	Libraries with name “HS<library-name>”:

	
	libHS<library-name>.a

	libHS<library-name>-ghc<ghc-flavour><ghc-version>.<dyn-library-extension>*

	
	Libraries with name “C<library-name>”:

	
	libC<library-name>.a

	lib<library-name>.<dyn-library-extension>*

	
extra-lib-dirs: directory list

	A list of directories to search for libraries.

	
cc-options: token list

	Command-line arguments to be passed to the C compiler. Since the
arguments are compiler-dependent, this field is more useful with the
setup described in the section on system-dependent parameters.

	
cpp-options: token list

	Command-line arguments for pre-processing Haskell code. Applies to
Haskell source and other pre-processed Haskell source like .hsc
.chs. Does not apply to C code, that’s what cc-options is for.

	
cxx-options: token list

	
	Since

	Cabal 2.2

Command-line arguments to be passed to the compiler when compiling
C++ code. The C++ sources to which these command-line arguments
should be applied can be specified with the cxx-sources
field. Command-line options for C and C++ can be passed separately to
the compiler when compiling both C and C++ sources by segregating the C
and C++ sources with the c-sources and
cxx-sources fields respectively, and providing different
command-line arguments with the cc-options and the
cxx-options fields.

	
cmm-options: token list

	
	Since

	Cabal 3.0

Command-line arguments to be passed to the compiler when compiling
C– code. See also cmm-sources.

	
asm-options: token list

	
	Since

	Cabal 3.0

Command-line arguments to be passed to the assembler when compiling
assembler code. See also asm-sources.

	
ld-options: token list

	Command-line arguments to be passed to the linker. Since the
arguments are compiler-dependent, this field is more useful with the
setup described in the section on system-dependent parameters.

	
pkgconfig-depends: package list

	A list of
pkg-config [http://www.freedesktop.org/wiki/Software/pkg-config/]
packages, needed to build this package. They can be annotated with
versions, e.g. gtk+-2.0 >= 2.10, cairo >= 1.0. If no version
constraint is specified, any version is assumed to be acceptable.
Cabal uses pkg-config to find if the packages are available on
the system and to find the extra compilation and linker options
needed to use the packages.

If you need to bind to a C library that supports pkg-config then
it is much preferable to use this field rather than hard code options
into the other fields. pkg-config --list-all will show you all
supported libraries. Depending on your system you may need to adjust
PKG_CONFIG_PATH.

	
frameworks: token list

	On Darwin/MacOS X, a list of frameworks to link to. See Apple’s
developer documentation for more details on frameworks. This entry
is ignored on all other platforms.

	
extra-frameworks-dirs: directory list

	
	Since

	Cabal 1.24

On Darwin/MacOS X, a list of directories to search for frameworks.
This entry is ignored on all other platforms.

	
mixins: mixin list

	
	Since

	Cabal 2.0

Supported only in GHC 8.2 and later. A list of packages mentioned in the
build-depends field, each optionally accompanied by a list of
module and module signature renamings.

The simplest mixin syntax is simply the name of a package mentioned in the
build-depends field. For example:

library
 build-depends:
 foo ^>= 1.2.3
 mixins:
 foo

But this doesn’t have any effect. More interesting is to use the mixin
entry to rename one or more modules from the package, like this:

library
 mixins:
 foo (Foo.Bar as AnotherFoo.Bar, Foo.Baz as AnotherFoo.Baz)

Note that renaming a module like this will hide all the modules
that are not explicitly named.

Modules can also be hidden:

library:
 mixins:
 foo hiding (Foo.Bar)

Hiding modules exposes everything that is not explicitly hidden.

Note

The current version of Cabal suffers from an infelicity in how the
entries of mixins are parsed: an entry will fail to parse
if the provided renaming clause has whitespace after the opening
parenthesis. This will be fixed in future versions of Cabal.

See issues #5150 [https://github.com/haskell/cabal/issues/5150], #4864 [https://github.com/haskell/cabal/issues/4864], and #5293 [https://github.com/haskell/cabal/issues/5293].

There can be multiple mixin entries for a given package, in effect creating
multiple copies of the dependency:

library
 mixins:
 foo (Foo.Bar as AnotherFoo.Bar, Foo.Baz as AnotherFoo.Baz),
 foo (Foo.Bar as YetAnotherFoo.Bar)

The requires clause is used to rename the module signatures required by
a package:

library
 mixins:
 foo (Foo.Bar as AnotherFoo.Bar) requires (Foo.SomeSig as AnotherFoo.SomeSig)

Signature-only packages don’t have any modules, so only the signatures can
be renamed, with the following syntax:

library
 mixins:
 sigonly requires (SigOnly.SomeSig as AnotherSigOnly.SomeSig)

See the library:signatures field for more details.

Mixin packages are part of the Backpack [https://ghc.haskell.org/trac/ghc/wiki/Backpack] extension to the
Haskell module system.

The matching of the module signatures required by a
build-depends dependency with the implementation modules
present in another dependency is triggered by a coincidence of names. When
the names of the signature and of the implementation are already the same,
the matching is automatic. But when the names don’t coincide, or we want to
instantiate a signature in two different ways, adding mixin entries that
perform renamings becomes necessary.

Warning

Backpack [https://ghc.haskell.org/trac/ghc/wiki/Backpack] has the limitation that implementation modules that instantiate
signatures required by a build-depends dependency can’t
reside in the same component that has the dependency. They must reside
in a different package dependency, or at least in a separate internal
library.

3.3.2.10. Configurations

Library and executable sections may include conditional blocks, which
test for various system parameters and configuration flags. The flags
mechanism is rather generic, but most of the time a flag represents
certain feature, that can be switched on or off by the package user.
Here is an example package description file using configurations:

3.3.2.10.1. Example: A package containing a library and executable programs

Name: Test1
Version: 0.0.1
Cabal-Version: >= 1.8
License: BSD3
Author: Jane Doe
Synopsis: Test package to test configurations
Category: Example
Build-Type: Simple

Flag Debug
 Description: Enable debug support
 Default: False
 Manual: True

Flag WebFrontend
 Description: Include API for web frontend.
 Default: False
 Manual: True

Flag NewDirectory
 description: Whether to build against @directory >= 1.2@
 -- This is an automatic flag which the solver will be
 -- assign automatically while searching for a solution

Library
 Build-Depends: base >= 4.2 && < 4.9
 Exposed-Modules: Testing.Test1
 Extensions: CPP

 GHC-Options: -Wall
 if flag(Debug)
 CPP-Options: -DDEBUG
 if !os(windows)
 CC-Options: "-DDEBUG"
 else
 CC-Options: "-DNDEBUG"

 if flag(WebFrontend)
 Build-Depends: cgi >= 0.42 && < 0.44
 Other-Modules: Testing.WebStuff
 CPP-Options: -DWEBFRONTEND

 if flag(NewDirectory)
 build-depends: directory >= 1.2 && < 1.4
 Build-Depends: time >= 1.0 && < 1.9
 else
 build-depends: directory == 1.1.*
 Build-Depends: old-time >= 1.0 && < 1.2

Executable test1
 Main-is: T1.hs
 Other-Modules: Testing.Test1
 Build-Depends: base >= 4.2 && < 4.9

 if flag(debug)
 CC-Options: "-DDEBUG"
 CPP-Options: -DDEBUG

3.3.2.10.2. Layout

Flags, conditionals, library and executable sections use layout to
indicate structure. This is very similar to the Haskell layout rule.
Entries in a section have to all be indented to the same level which
must be more than the section header. Tabs are not allowed to be used
for indentation.

As an alternative to using layout you can also use explicit braces
{}. In this case the indentation of entries in a section does not
matter, though different fields within a block must be on different
lines. Here is a bit of the above example again, using braces:

3.3.2.10.3. Example: Using explicit braces rather than indentation for layout

Name: Test1
Version: 0.0.1
Cabal-Version: >= 1.8
License: BSD3
Author: Jane Doe
Synopsis: Test package to test configurations
Category: Example
Build-Type: Simple

Flag Debug {
 Description: Enable debug support
 Default: False
 Manual: True
}

Library {
 Build-Depends: base >= 4.2 && < 4.9
 Exposed-Modules: Testing.Test1
 Extensions: CPP
 if flag(debug) {
 CPP-Options: -DDEBUG
 if !os(windows) {
 CC-Options: "-DDEBUG"
 } else {
 CC-Options: "-DNDEBUG"
 }
 }
}

3.3.2.10.4. Configuration Flags

	
flag name

	Flag section declares a flag which can be used in conditional blocks.

Flag names are case-insensitive and must match [[:alnum:]_][[:alnum:]_-]*
regular expression, or expressed as ABNF [https://tools.ietf.org/html/rfc5234]:

flag-name = (UALNUM / "_") *(UALNUM / "_" / "-")

UALNUM = UALPHA / DIGIT
UALPHA = ... ; set of alphabetic Unicode code-points

Note

Hackage accepts ASCII-only flags, [a-zA-Z0-9_][a-zA-Z0-9_-]* regexp.

	
description: freeform

	The description of this flag.

	
default: boolean

	
	Default value

	True

The default value of this flag.

Note

This value may be overridden in several
ways. The
rationale for having flags default to True is that users usually
want new features as soon as they are available. Flags representing
features that are not (yet) recommended for most users (such as
experimental features or debugging support) should therefore
explicitly override the default to False.

	
manual: boolean

	
	Default value

	False

	Since

	1.6

By default, Cabal will first try to satisfy dependencies with the
default flag value and then, if that is not possible, with the
negated value. However, if the flag is manual, then the default
value (which can be overridden by commandline flags) will be used.

3.3.2.11. Conditional Blocks

Conditional blocks may appear anywhere inside a library or executable
section. They have to follow rather strict formatting rules. Conditional
blocks must always be of the shape

if condition
 property-descriptions-or-conditionals

or

if condition
 property-descriptions-or-conditionals
else
 property-descriptions-or-conditionals

Note that the if and the condition have to be all on the same line.

Since Cabal 2.2 conditional blocks support elif construct.

if condition1
 property-descriptions-or-conditionals
elif condition2
 property-descriptions-or-conditionals
else
 property-descriptions-or-conditionals

3.3.2.11.1. Conditions

Conditions can be formed using boolean tests and the boolean operators
|| (disjunction / logical “or”), && (conjunction / logical
“and”), or ! (negation / logical “not”). The unary ! takes
highest precedence, || takes lowest. Precedence levels may be
overridden through the use of parentheses. For example,
os(darwin) && !arch(i386) || os(freebsd) is equivalent to
(os(darwin) && !(arch(i386))) || os(freebsd).

The following tests are currently supported.

	os(name)

	Tests if the current operating system is name. The argument is
tested against System.Info.os on the target system. There is
unfortunately some disagreement between Haskell implementations
about the standard values of System.Info.os. Cabal canonicalises
it so that in particular os(windows) works on all
implementations. If the canonicalised os names match, this test
evaluates to true, otherwise false. The match is case-insensitive.

	arch(name)

	Tests if the current architecture is name. The argument is matched
against System.Info.arch on the target system. If the arch names
match, this test evaluates to true, otherwise false. The match is
case-insensitive.

	impl(compiler)

	Tests for the configured Haskell implementation. An optional version
constraint may be specified (for example impl(ghc >= 6.6.1)). If
the configured implementation is of the right type and matches the
version constraint, then this evaluates to true, otherwise false.
The match is case-insensitive.

Note that including a version constraint in an impl test causes
it to check for two properties:

	The current compiler has the specified name, and

	The compiler’s version satisfied the specified version constraint

As a result, !impl(ghc >= x.y.z) is not entirely equivalent to
impl(ghc < x.y.z). The test !impl(ghc >= x.y.z) checks that:

	The current compiler is not GHC, or

	The version of GHC is earlier than version x.y.z.

	flag(name)

	Evaluates to the current assignment of the flag of the given name.
Flag names are case insensitive. Testing for flags that have not
been introduced with a flag section is an error.

	true

	Constant value true.

	false

	Constant value false.

3.3.2.11.2. Resolution of Conditions and Flags

If a package descriptions specifies configuration flags the package user
can control these in several
ways. If the
user does not fix the value of a flag, Cabal will try to find a flag
assignment in the following way.

	For each flag specified, it will assign its default value, evaluate
all conditions with this flag assignment, and check if all
dependencies can be satisfied. If this check succeeded, the package
will be configured with those flag assignments.

	If dependencies were missing, the last flag (as by the order in which
the flags were introduced in the package description) is tried with
its alternative value and so on. This continues until either an
assignment is found where all dependencies can be satisfied, or all
possible flag assignments have been tried.

To put it another way, Cabal does a complete backtracking search to find
a satisfiable package configuration. It is only the dependencies
specified in the build-depends field in conditional blocks that
determine if a particular flag assignment is satisfiable
(build-tools are not considered). The order of the declaration and
the default value of the flags determines the search order. Flags
overridden on the command line fix the assignment of that flag, so no
backtracking will be tried for that flag.

If no suitable flag assignment could be found, the configuration phase
will fail and a list of missing dependencies will be printed. Note that
this resolution process is exponential in the worst case (i.e., in the
case where dependencies cannot be satisfied). There are some
optimizations applied internally, but the overall complexity remains
unchanged.

3.3.2.12. Meaning of field values when using conditionals

During the configuration phase, a flag assignment is chosen, all
conditionals are evaluated, and the package description is combined into
a flat package descriptions. If the same field both inside a conditional
and outside then they are combined using the following rules.

	Boolean fields are combined using conjunction (logical “and”).

	List fields are combined by appending the inner items to the outer
items, for example

other-extensions: CPP
if impl(ghc)
 other-extensions: MultiParamTypeClasses

when compiled using GHC will be combined to

other-extensions: CPP, MultiParamTypeClasses

Similarly, if two conditional sections appear at the same nesting
level, properties specified in the latter will come after properties
specified in the former.

	All other fields must not be specified in ambiguous ways. For example

Main-is: Main.hs
if flag(useothermain)
 Main-is: OtherMain.hs

will lead to an error. Instead use

if flag(useothermain)
 Main-is: OtherMain.hs
else
 Main-is: Main.hs

3.3.2.13. Common stanzas

	
common name

	
	Since

	Cabal 2.2

Starting with Cabal-2.2 it’s possible to use common build info stanzas.

common deps
 build-depends: base ^>= 4.11
 ghc-options: -Wall

common test-deps
 build-depends: tasty ^>= 0.12.0.1

library
 import: deps
 exposed-modules: Foo

test-suite tests
 import: deps, test-deps
 type: exitcode-stdio-1.0
 main-is: Tests.hs
 build-depends: foo

	You can use build information fields in common stanzas.

	Common stanzas must be defined before use.

	Common stanzas can import other common stanzas.

	You can import multiple stanzas at once. Stanza names must be separated by commas.

	import must be the first field in a section. Since Cabal 3.0 imports
are also allowed inside conditionals.

Note

The name import was chosen, because there is includes field.

3.3.2.14. Source Repositories

	
source-repository

	
	Since

	Cabal 1.6

It is often useful to be able to specify a source revision control
repository for a package. Cabal lets you specifying this information in
a relatively structured form which enables other tools to interpret and
make effective use of the information. For example the information
should be sufficient for an automatic tool to checkout the sources.

Cabal supports specifying different information for various common
source control systems. Obviously not all automated tools will support
all source control systems.

Cabal supports specifying repositories for different use cases. By
declaring which case we mean automated tools can be more useful. There
are currently two kinds defined:

	The head kind refers to the latest development branch of the
package. This may be used for example to track activity of a project
or as an indication to outside developers what sources to get for
making new contributions.

	The this kind refers to the branch and tag of a repository that
contains the sources for this version or release of a package. For
most source control systems this involves specifying a tag, id or
hash of some form and perhaps a branch. The purpose is to be able to
reconstruct the sources corresponding to a particular package
version. This might be used to indicate what sources to get if
someone needs to fix a bug in an older branch that is no longer an
active head branch.

You can specify one kind or the other or both. As an example here are
the repositories for the Cabal library. Note that the this kind of
repository specifies a tag.

source-repository head
 type: darcs
 location: http://darcs.haskell.org/cabal/

source-repository this
 type: darcs
 location: http://darcs.haskell.org/cabal-branches/cabal-1.6/
 tag: 1.6.1

The exact fields are as follows:

	
type: token

	The name of the source control system used for this repository. The
currently recognised types are:

	darcs

	git

	svn

	cvs

	mercurial (or alias hg)

	bazaar (or alias bzr)

	arch

	monotone

This field is required.

	
location: URL

	The location of the repository. The exact form of this field depends
on the repository type. For example:

	for darcs: http://code.haskell.org/foo/

	for git: git://github.com/foo/bar.git

	for CVS: anoncvs@cvs.foo.org:/cvs

This field is required.

	
module: token

	CVS requires a named module, as each CVS server can host multiple
named repositories.

This field is required for the CVS repository type and should not be
used otherwise.

	
branch: token

	Many source control systems support the notion of a branch, as a
distinct concept from having repositories in separate locations. For
example CVS, SVN and git use branches while for darcs uses different
locations for different branches. If you need to specify a branch to
identify a your repository then specify it in this field.

This field is optional.

	
tag: token

	A tag identifies a particular state of a source repository. The tag
can be used with a this repository kind to identify the state of
a repository corresponding to a particular package version or
release. The exact form of the tag depends on the repository type.

This field is required for the this repository kind.

	
subdir: directory

	Some projects put the sources for multiple packages under a single
source repository. This field lets you specify the relative path
from the root of the repository to the top directory for the
package, i.e. the directory containing the package’s .cabal
file.

This field is optional. It default to empty which corresponds to the
root directory of the repository.

3.3.2.15. Downloading a package’s source

The cabal get command allows to access a package’s source code -
either by unpacking a tarball downloaded from Hackage (the default) or
by checking out a working copy from the package’s source repository.

$ cabal get [FLAGS] PACKAGES

The get command supports the following options:

	-d --destdir PATH

	Where to place the package source, defaults to (a subdirectory of)
the current directory.

	-s --source-repository [head|this|…]

	Fork the package’s source repository using the appropriate version
control system. The optional argument allows to choose a specific
repository kind.

	--index-state [HEAD|@<unix-timestamp>|<iso8601-utc-timestamp>]

	Use source package index state as it existed at a previous time. Accepts
unix-timestamps (e.g. @1474732068), ISO8601 UTC timestamps (e.g.
2016-09-24T17:47:48Z), or HEAD (default).
This determines which package versions are available as well as which
.cabal file revision is selected (unless --pristine is used).

	--pristine

	Unpack the original pristine tarball, rather than updating the
.cabal file with the latest revision from the package archive.

3.3.3. Custom setup scripts

Since Cabal 1.24, custom Setup.hs are required to accurately track
their dependencies by declaring them in the .cabal file rather than
rely on dependencies being implicitly in scope. Please refer
this article [https://www.well-typed.com/blog/2015/07/cabal-setup-deps/]
for more details.

As of Cabal library version 3.0, defaultMain* variants implement support
for response files. Custom Setup.hs files that do not use one of these
main functions are required to implement their own support, such as by using
GHC.ResponseFile.getArgsWithResponseFiles.

Declaring a custom-setup stanza also enables the generation of
MIN_VERSION_package_(A,B,C) CPP macros for the Setup component.

	
custom-setup

	
	Since

	Cabal 1.24

The optional custom-setup stanza contains information needed
for the compilation of custom Setup.hs scripts,

custom-setup
 setup-depends:
 base >= 4.5 && < 4.11,
 Cabal >= 1.14 && < 1.25

	
setup-depends: package list

	
	Since

	Cabal 1.24

The dependencies needed to compile Setup.hs. See the
build-depends field for a description of the syntax expected by
this field.

3.3.3.1. Backward compatibility and custom-setup

Versions prior to Cabal 1.24 don’t recognise custom-setup stanzas,
and will behave agnostic to them (except for warning about an unknown
section). Consequently, versions prior to Cabal 1.24 can’t ensure the
declared dependencies setup-depends are in scope, and instead
whatever is registered in the current package database environment
will become eligible (and resolved by the compiler) for the
Setup.hs module.

The availability of the
MIN_VERSION_package_(A,B,C) CPP macros
inside Setup.hs scripts depends on the condition that either

	a custom-setup section has been declared (or cabal v2-build is being
used which injects an implicit hard-coded custom-setup stanza if it’s missing), or

	GHC 8.0 or later is used (which natively injects package version CPP macros)

Consequently, if you need to write backward compatible Setup.hs
scripts using CPP, you should declare a custom-setup stanza and
use the pattern below:

{-# LANGUAGE CPP #-}
import Distribution.Simple

#if defined(MIN_VERSION_Cabal)
-- version macros are available and can be used as usual
if MIN_VERSION_Cabal(a,b,c)
-- code specific to lib:Cabal >= a.b.c
else
-- code specific to lib:Cabal < a.b.c
endif
#else
warning Enabling heuristic fall-back. Please upgrade cabal-install to 1.24 or later if Setup.hs fails to compile.

-- package version macros not available; except for exotic environments,
-- you can heuristically assume that lib:Cabal's version is correlated
-- with __GLASGOW_HASKELL__, and specifically since we can assume that
-- GHC < 8.0, we can assume that lib:Cabal is version 1.22 or older.
#endif

main = ...

The simplified (heuristic) CPP pattern shown below is useful if all you need
is to distinguish Cabal < 2.0 from Cabal >= 2.0.

{-# LANGUAGE CPP #-}
import Distribution.Simple

#if !defined(MIN_VERSION_Cabal)
define MIN_VERSION_Cabal(a,b,c) 0
#endif

#if MIN_VERSION_Cabal(2,0,0)
-- code for lib:Cabal >= 2.0
#else
-- code for lib:Cabal < 2.0
#endif

main = ...

3.3.4. Autogenerated modules and includes

Modules that are built automatically at setup, created with a custom
setup script, must appear on other-modules for the library,
executable, test-suite or benchmark stanzas or also on
library:exposed-modules for libraries to be used, but are not
really on the package when distributed. This makes commands like sdist fail
because the file is not found.

These special modules must appear again on the autogen-modules
field of the stanza that is using it, besides other-modules or
library:exposed-modules. With this there is no need to create
complex build hooks for this poweruser case.

	
autogen-modules: module list

	
	Since

	Cabal 2.0

Todo

document autogen-modules field

Right now executable:main-is modules are not supported on
autogen-modules.

Library
 default-language: Haskell2010
 build-depends: base
 exposed-modules:
 MyLibrary
 MyLibHelperModule
 other-modules:
 MyLibModule
 autogen-modules:
 MyLibHelperModule

Executable Exe
 default-language: Haskell2010
 main-is: Dummy.hs
 build-depends: base
 other-modules:
 MyExeModule
 MyExeHelperModule
 autogen-modules:
 MyExeHelperModule

	
autogen-includes: filename list

	
	Since

	Cabal 3.0

A list of header files from this package which are autogenerated
(e.g. by a configure script). Autogenerated header files are not
packaged by sdist command.

3.3.5. Accessing data files from package code

The placement on the target system of files listed in
the data-files field varies between systems, and in some cases
one can even move packages around after installation (see prefix
independence). To
enable packages to find these files in a portable way, Cabal generates a
module called Paths_pkgname (with any hyphens in pkgname
replaced by underscores) during building, so that it may be imported by
modules of the package. This module defines a function

getDataFileName :: FilePath -> IO FilePath

If the argument is a filename listed in the data-files field, the
result is the name of the corresponding file on the system on which the
program is running.

Note

If you decide to import the Paths_pkgname module then it
must be listed in the other-modules field just like any other
module in your package and on autogen-modules as the file is
autogenerated.

The Paths_pkgname module is not platform independent, as any
other autogenerated module, so it does not get included in the source
tarballs generated by sdist.

The Paths_pkgname module also includes some other useful
functions and values, which record the version of the package and some
other directories which the package has been configured to be installed
into (e.g. data files live in getDataDir):

version :: Version

getBinDir :: IO FilePath
getLibDir :: IO FilePath
getDynLibDir :: IO FilePath
getDataDir :: IO FilePath
getLibexecDir :: IO FilePath
getSysconfDir :: IO FilePath

The actual location of all these directories can be individually
overridden at runtime using environment variables of the form
pkg_name_var, where pkg_name is the name of the package with all
hyphens converted into underscores, and var is either bindir,
libdir, dynlibdir, datadir, libexedir or sysconfdir. For example,
the configured data directory for pretty-show is controlled with the
pretty_show_datadir environment variable.

3.3.5.1. Accessing the package version

The aforementioned auto generated Paths_pkgname module also
exports the constant version ::
Version [http://hackage.haskell.org/package/base/docs/Data-Version.html]
which is defined as the version of your package as specified in the
version field.

3.3.6. System-dependent parameters

For some packages, especially those interfacing with C libraries,
implementation details and the build procedure depend on the build
environment. The build-type Configure can be used to handle many
such situations. In this case, Setup.hs should be:

import Distribution.Simple
main = defaultMainWithHooks autoconfUserHooks

Most packages, however, would probably do better using the Simple
build type and configurations.

The build-type Configure differs from Simple in two ways:

	The package root directory must contain a shell script called
configure. The configure step will run the script. This
configure script may be produced by
autoconf [http://www.gnu.org/software/autoconf/] or may be
hand-written. The configure script typically discovers
information about the system and records it for later steps, e.g. by
generating system-dependent header files for inclusion in C source
files and preprocessed Haskell source files. (Clearly this won’t work
for Windows without MSYS or Cygwin: other ideas are needed.)

	If the package root directory contains a file called
package.buildinfo after the configuration step, subsequent
steps will read it to obtain additional settings for build
information fields,to be merged with the ones
given in the .cabal file. In particular, this file may be
generated by the configure script mentioned above, allowing these
settings to vary depending on the build environment.

The build information file should have the following structure:

buildinfo

executable: name buildinfo

executable: name buildinfo …

where each buildinfo consists of settings of fields listed in the
section on build information. The first one (if
present) relates to the library, while each of the others relate to the
named executable. (The names must match the package description, but you
don’t have to have entries for all of them.)

Neither of these files is required. If they are absent, this setup
script is equivalent to defaultMain.

3.3.6.1. Example: Using autoconf

This example is for people familiar with the
autoconf [http://www.gnu.org/software/autoconf/] tools.

In the X11 package, the file configure.ac contains:

AC_INIT([Haskell X11 package], [1.1], [libraries@haskell.org], [X11])

Safety check: Ensure that we are in the correct source directory.
AC_CONFIG_SRCDIR([X11.cabal])

Header file to place defines in
AC_CONFIG_HEADERS([include/HsX11Config.h])

Check for X11 include paths and libraries
AC_PATH_XTRA
AC_TRY_CPP([#include <X11/Xlib.h>],,[no_x=yes])

Build the package if we found X11 stuff
if test "$no_x" = yes
then BUILD_PACKAGE_BOOL=False
else BUILD_PACKAGE_BOOL=True
fi
AC_SUBST([BUILD_PACKAGE_BOOL])

AC_CONFIG_FILES([X11.buildinfo])
AC_OUTPUT

Then the setup script will run the configure script, which checks
for the presence of the X11 libraries and substitutes for variables in
the file X11.buildinfo.in:

buildable: @BUILD_PACKAGE_BOOL@
cc-options: @X_CFLAGS@
ld-options: @X_LIBS@

This generates a file X11.buildinfo supplying the parameters needed
by later stages:

buildable: True
cc-options: -I/usr/X11R6/include
ld-options: -L/usr/X11R6/lib

The configure script also generates a header file
include/HsX11Config.h containing C preprocessor defines recording
the results of various tests. This file may be included by C source
files and preprocessed Haskell source files in the package.

Note

Packages using these features will also need to list additional
files such as configure, templates for .buildinfo files, files
named only in .buildinfo files, header files and so on in the
extra-source-files field to ensure that they are included in
source distributions. They should also list files and directories generated
by configure in the extra-tmp-files field to ensure that
they are removed by setup clean.

Quite often the files generated by configure need to be listed
somewhere in the package description (for example, in the
install-includes field). However, we usually don’t want generated
files to be included in the source tarball. The solution is again
provided by the .buildinfo file. In the above example, the following
line should be added to X11.buildinfo:

install-includes: HsX11Config.h

In this way, the generated HsX11Config.h file won’t be included in
the source tarball in addition to HsX11Config.h.in, but it will be
copied to the right location during the install process. Packages that
use custom Setup.hs scripts can update the necessary fields
programmatically instead of using the .buildinfo file.

3.3.7. Conditional compilation

Sometimes you want to write code that works with more than one version
of a dependency. You can specify a range of versions for the dependency
in the build-depends, but how do you then write the code that can
use different versions of the API?

Haskell lets you preprocess your code using the C preprocessor (either
the real C preprocessor, or cpphs). To enable this, add
extensions: CPP to your package description. When using CPP, Cabal
provides some pre-defined macros to let you test the version of
dependent packages; for example, suppose your package works with either
version 3 or version 4 of the base package, you could select the
available version in your Haskell modules like this:

#if MIN_VERSION_base(4,0,0)
... code that works with base-4 ...
#else
... code that works with base-3 ...
#endif

In general, Cabal supplies a macro
MIN_VERSION_``package``_(A,B,C) for each package depended
on via build-depends. This macro is true if the actual version of
the package in use is greater than or equal to A.B.C (using the
conventional ordering on version numbers, which is lexicographic on the
sequence, but numeric on each component, so for example 1.2.0 is greater
than 1.0.3).

Since version 1.20, the MIN_TOOL_VERSION_``tool``
family of macros lets you condition on the version of build tools used to
build the program (e.g. hsc2hs).

Since version 1.24, the macro CURRENT_COMPONENT_ID, which
expands to the string of the component identifier that uniquely
identifies this component. Furthermore, if the package is a library,
the macro CURRENT_PACKAGE_KEY records the identifier that was passed
to GHC for use in symbols and for type equality.

Since version 2.0, the macro CURRENT_PACKAGE_VERSION expands
to the string version number of the current package.

Cabal places the definitions of these macros into an
automatically-generated header file, which is included when
preprocessing Haskell source code by passing options to the C
preprocessor.

Cabal also allows to detect when the source code is being used for
generating documentation. The __HADDOCK_VERSION__ macro is defined
only when compiling via Haddock [http://www.haskell.org/haddock/]
instead of a normal Haskell compiler. The value of the
__HADDOCK_VERSION__ macro is defined as A*1000 + B*10 + C, where
A.B.C is the Haddock version. This can be useful for working around
bugs in Haddock or generating prettier documentation in some special
cases.

3.3.8. More complex packages

For packages that don’t fit the simple schemes described above, you have
a few options:

	By using the build-type Custom, you can supply your own
Setup.hs file, and customize the simple build infrastructure
using hooks. These allow you to perform additional actions before
and after each command is run, and also to specify additional
preprocessors. A typical Setup.hs may look like this:

import Distribution.Simple
main = defaultMainWithHooks simpleUserHooks { postHaddock = posthaddock }

posthaddock args flags desc info =

See UserHooks in
Distribution.Simple
for the details, but note that this interface is experimental, and
likely to change in future releases.

If you use a custom Setup.hs file you should strongly consider
adding a custom-setup stanza with a
custom-setup:setup-depends field to ensure that your setup
script does not break with future dependency versions.

	You could delegate all the work to make, though this is unlikely
to be very portable. Cabal supports this with the build-type
Make and a trivial setup library
Distribution.Make,
which simply parses the command line arguments and invokes make.
Here Setup.hs should look like this:

import Distribution.Make
main = defaultMain

The root directory of the package should contain a configure
script, and, after that has run, a Makefile with a default target
that builds the package, plus targets install, register,
unregister, clean, dist and docs. Some options to
commands are passed through as follows:

	The --with-hc-pkg, --prefix, --bindir, --libdir,
--dynlibdir, --datadir, --libexecdir and --sysconfdir options to
the configure command are passed on to the configure
script. In addition the value of the --with-compiler option is
passed in a --with-hc option and all options specified with
--configure-option= are passed on.

	The --destdir option to the copy command becomes a setting
of a destdir variable on the invocation of make copy. The
supplied Makefile should provide a copy target, which will
probably look like this:

copy :
 $(MAKE) install prefix=$(destdir)/$(prefix) \
 bindir=$(destdir)/$(bindir) \
 libdir=$(destdir)/$(libdir) \
 dynlibdir=$(destdir)/$(dynlibdir) \
 datadir=$(destdir)/$(datadir) \
 libexecdir=$(destdir)/$(libexecdir) \
 sysconfdir=$(destdir)/$(sysconfdir) \

	Finally, with the build-type Custom, you can also write your
own setup script from scratch. It must conform to the interface
described in the section on building and installing
packages, and you may use the Cabal
library for all or part of the work. One option is to copy the source
of Distribution.Simple, and alter it for your needs. Good luck.

Footnotes

	1

	Some packages (ab)use build-depends on old-style builds, but this has a few major drawbacks:

	using Nix-style builds it’s considered an error if you depend on a exe-only package via build-depends: the solver will refuse it.

	it may or may not place the executable on $PATH.

	it does not ensure the correct version of the package is installed, so you might end up overwriting versions with each other.

4. Reporting Bugs and Stability of Cabal Interfaces

	4.1. Reporting bugs and deficiencies

	4.2. Stability of Cabal interfaces
	4.2.1. Cabal file format

	4.2.2. Command-line interface
	4.2.2.1. Very Stable Command-line interfaces

	4.2.2.2. Stable Command-line interfaces

	4.2.2.3. Unstable command-line

	4.2.3. Functions and Types
	4.2.3.1. Very Stable API

	4.2.3.2. Semi-stable API

	4.2.3.3. Unstable API

	4.2.4. Hackage

4.1. Reporting bugs and deficiencies

Please report any flaws or feature requests in the bug
tracker [https://github.com/haskell/cabal/issues].

For general discussion or queries email the libraries mailing list
libraries@haskell.org. There is also a development mailing list
cabal-devel@haskell.org.

4.2. Stability of Cabal interfaces

The Cabal library and related infrastructure is still under active
development. New features are being added and limitations and bugs are
being fixed. This requires internal changes and often user visible
changes as well. We therefore cannot promise complete future-proof
stability, at least not without halting all development work.

This section documents the aspects of the Cabal interface that we can
promise to keep stable and which bits are subject to change.

4.2.1. Cabal file format

This is backwards compatible and mostly forwards compatible. New fields
can be added without breaking older versions of Cabal. Fields can be
deprecated without breaking older packages.

4.2.2. Command-line interface

4.2.2.1. Very Stable Command-line interfaces

	./setup configure

	--prefix

	--user

	--ghc, --uhc

	--verbose

	--prefix

	./setup build

	./setup install

	./setup register

	./setup copy

4.2.2.2. Stable Command-line interfaces

4.2.2.3. Unstable command-line

4.2.3. Functions and Types

The Cabal library follows the Package Versioning Policy [http://pvp.haskell.org/].
This means that within a stable major release, for example 1.2.x, there
will be no incompatible API changes. But minor versions increments, for
example 1.2.3, indicate compatible API additions.

The Package Versioning Policy does not require any API guarantees
between major releases, for example between 1.2.x and 1.4.x. In practise
of course not everything changes between major releases. Some parts of
the API are more prone to change than others. The rest of this section
gives some informal advice on what level of API stability you can expect
between major releases.

4.2.3.1. Very Stable API

	defaultMain

	defaultMainWithHooks defaultUserHooks

But regular defaultMainWithHooks isn’t stable since UserHooks
changes.

4.2.3.2. Semi-stable API

	UserHooks The hooks API will change in the future

	Distribution.* is mostly declarative information about packages
and is somewhat stable.

4.2.3.3. Unstable API

Everything under Distribution.Simple.* has no stability guarantee.

4.2.4. Hackage

The index format is a partly stable interface. It consists of a tar.gz
file that contains directories with .cabal files in. In future it
may contain more kinds of files so do not assume every file is a
.cabal file. Incompatible revisions to the format would involve
bumping the name of the index file, i.e., 00-index.tar.gz,
01-index.tar.gz etc.

5. Nix-style Local Builds

Nix-style local builds are a new build system implementation inspired by Nix.
The Nix-style local build system is commonly called “v2-build” for short
after the cabal v2-* family of commands that control it. However, those
names are only temporary until Nix-style local builds become the default.
This is expected to happen soon. For those who do not wish to use the new
functionality, the classic project style will not be removed immediately,
but these legacy commands will require the usage of the v1- prefix as of
Cabal 3.0 and will be removed in a future release. For a future-proof
way to use these commands in a script or tutorial that anticipates the
possibility of another UI paradigm being devised in the future, there
are also v2- prefixed versions that will reference the same functionality
until such a point as it is completely removed from Cabal.

Nix-style local builds combine the best of non-sandboxed and sandboxed Cabal:

	Like sandboxed Cabal today, we build sets of independent local
packages deterministically and independent of any global state.
v2-build will never tell you that it can’t build your package
because it would result in a “dangerous reinstall.” Given a
particular state of the Hackage index, your build is completely
reproducible. For example, you no longer need to compile packages
with profiling ahead of time; just request profiling and v2-build
will rebuild all its dependencies with profiling automatically.

	Like non-sandboxed Cabal today, builds of external packages are
cached in ~/.cabal/store, so that a package can be built once,
and then reused anywhere else it is also used. No need to continually
rebuild dependencies whenever you make a new sandbox: dependencies
which can be shared, are shared.

Nix-style local builds were first released as beta in cabal-install 1.24.
They currently work with all versions of GHC supported by that release: GHC 7.0 and later.

Some features described in this manual are not implemented. If you need
them, please give us a shout and we’ll prioritize accordingly.

	5.1. Quickstart
	5.1.1. Developing multiple packages

	5.2. Cookbook
	5.2.1. How can I profile my library/application?

	5.3. How it works
	5.3.1. Local versus external packages

	5.3.2. Where are my build products?

	5.3.3. Caching

	5.4. Commands
	5.4.1. cabal v2-configure

	5.4.2. cabal v2-update

	5.4.3. cabal v2-build

	5.4.4. cabal v2-repl

	5.4.5. cabal v2-run

	5.4.6. cabal v2-freeze

	5.4.7. cabal v2-bench

	5.4.8. cabal v2-test

	5.4.9. cabal v2-haddock

	5.4.10. cabal v2-exec

	5.4.11. cabal v2-install

	5.4.12. cabal v2-clean

	5.4.13. cabal v2-sdist

	5.5. Configuring builds with cabal.project
	5.5.1. Specifying the local packages
	5.5.1.1. Specifying Packages from Remote Version Control Locations

	5.5.2. Global configuration options

	5.5.3. Solver configuration options

	5.5.4. Package configuration options

	5.5.5. Advanced global configuration options

5.1. Quickstart

Suppose that you are in a directory containing a single Cabal package
which you wish to build (if you haven’t set up a package yet check
out developing packages for
instructions). You can configure and build it using Nix-style
local builds with this command (configuring is not necessary):

$ cabal v2-build

To open a GHCi shell with this package, use this command:

$ cabal v2-repl

To run an executable defined in this package, use this command:

$ cabal v2-run <executable name> [executable args]

5.1.1. Developing multiple packages

Many Cabal projects involve multiple packages which need to be built
together. To build multiple Cabal packages, you need to first create a
cabal.project file which declares where all the local package
directories live. For example, in the Cabal repository, there is a root
directory with a folder per package, e.g., the folders Cabal and
cabal-install. The cabal.project file specifies each folder as
part of the project:

packages: Cabal/
 cabal-install/

The expectation is that a cabal.project is checked into your source
control, to be used by all developers of a project. If you need to make
local changes, they can be placed in cabal.project.local (which
should not be checked in.)

Then, to build every component of every package, from the top-level
directory, run the command: (using cabal-install-2.0 or greater.)

$ cabal v2-build all

To build a specific package, you can either run v2-build from the
directory of the package in question:

$ cd cabal-install
$ cabal v2-build

or you can pass the name of the package as an argument to
cabal v2-build (this works in any subdirectory of the project):

$ cabal v2-build cabal-install

You can also specify a specific component of the package to build. For
example, to build a test suite named package-tests, use the command:

$ cabal v2-build package-tests

Targets can be qualified with package names. So to request
package-tests from the Cabal package, use
Cabal:package-tests.

Unlike sandboxes, there is no need to setup a sandbox or add-source
projects; just check in cabal.project to your repository and
v2-build will just work.

5.2. Cookbook

5.2.1. How can I profile my library/application?

Create or edit your cabal.project.local, adding the following
line:

profiling: True

Now, cabal v2-build will automatically build all libraries and
executables with profiling. You can fine-tune the profiling settings
for each package using profiling-detail:

package p
 profiling-detail: toplevel-functions

Alternately, you can call cabal v2-build --enable-profiling to
temporarily build with profiling.

5.3. How it works

5.3.1. Local versus external packages

One of the primary innovations of Nix-style local builds is the
distinction between local packages, which users edit and recompile and
must be built per-project, versus external packages, which can be cached
across projects. To be more precise:

	A local package is one that is listed explicitly in the
packages, optional-packages or extra-packages field of a
project. Usually, these refer to packages whose source code lives
directly in a folder in your project (although, you can list an
arbitrary Hackage package in extra-packages to force it to be
treated as local).

Local packages, as well as the external packages (below) which depend on
them, are built inplace, meaning that they are always built
specifically for the project and are not installed globally. Inplace
packages are not cached and not given unique hashes, which makes them
suitable for packages which you want to edit and recompile.

	An external package is any package which is not listed in the
packages field. The source code for external packages is usually
retrieved from Hackage.

When an external package does not depend on an inplace package, it can
be built and installed to a global store, which can be shared across
projects. These build products are identified by a hash that over all of
the inputs which would influence the compilation of a package (flags,
dependency selection, etc.). Just as in Nix, these hashes uniquely
identify the result of a build; if we compute this identifier and we
find that we already have this ID built, we can just use the already
built version.

The global package store is ~/.cabal/store (configurable via
global store-dir option); if you need to clear your store for
whatever reason (e.g., to reclaim disk space or because the global
store is corrupted), deleting this directory is safe (v2-build
will just rebuild everything it needs on its next invocation).

This split motivates some of the UI choices for Nix-style local build
commands. For example, flags passed to cabal v2-build are only
applied to local packages, so that adding a flag to
cabal v2-build doesn’t necessitate a rebuild of every transitive
dependency in the global package store.

In cabal-install 2.0 and above, Nix-style local builds also take advantage of a
new Cabal library feature, per-component
builds [https://github.com/ezyang/ghc-proposals/blob/master/proposals/0000-componentized-cabal.rst],
where each component of a package is configured and built separately.
This can massively speed up rebuilds of packages with lots of components
(e.g., a package that defines multiple executables), as only one
executable needs to be rebuilt. Packages that use Custom setup scripts
are not currently built on a per-component basis.

5.3.2. Where are my build products?

A major deficiency in the current implementation of v2-build is that
there is no programmatic way to access the location of build products.
The location of the build products is intended to be an internal
implementation detail of v2-build, but we also understand that many
unimplemented features can only be reasonably worked around by
accessing build products directly.

The location where build products can be found varies depending on the
version of cabal-install:

	In cabal-install-1.24, the dist directory for a package p-0.1 is
stored in dist-newstyle/build/p-0.1. For example, if you built an
executable or test suite named pexe, it would be located at
dist-newstyle/build/p-0.1/build/pexe/pexe.

	In cabal-install-2.0, the dist directory for a package p-0.1
defining a library built with GHC 8.0.1 on 64-bit Linux is
dist-newstyle/build/x86_64-linux/ghc-8.0.1/p-0.1. When
per-component builds are enabled (any non-Custom package), a
subcomponent like an executable or test suite named pexe will be
stored at
dist-newstyle/build/x86_64-linux/ghc-8.0.1/p-0.1/c/pexe; thus,
the full path of the executable is
dist-newstyle/build/x86_64-linux/ghc-8.0.1/p-0.1/c/pexe/build/pexe/pexe
(you can see why we want this to be an implementation detail!)

	
	In cabal-install-2.2 and above, the /c/ part of the above path

	is replaced with one of /l/, /x/, /f/, /t/, or
/b/, depending on the type of component (sublibrary,
executable, foreign library, test suite, or benchmark
respectively). So the full path to an executable named pexe
compiled with GHC 8.0.1 on a 64-bit Linux is now
dist-newstyle/build/x86_64-linux/ghc-8.0.1/p-0.1/x/pexe/build/pexe/pexe;
for a benchmark named pbench it now is
dist-newstyle/build/x86_64-linux/ghc-8.0.1/p-0.1/b/pbench/build/pbench/pbench;

The paths are a bit longer in 2.0 and above but the benefit is that you can
transparently have multiple builds with different versions of GHC. We
plan to add the ability to create aliases for certain build
configurations, and more convenient paths to access particularly useful
build products like executables.

5.3.3. Caching

Nix-style local builds sport a robust caching system which help reduce
the time it takes to execute a rebuild cycle. While the details of how
cabal-install does caching are an implementation detail and may
change in the future, knowing what gets cached is helpful for
understanding the performance characteristics of invocations to
v2-build. The cached intermediate results are stored in
dist-newstyle/cache; this folder can be safely deleted to clear the
cache.

The following intermediate results are cached in the following files in
this folder (the most important two are first):

	solver-plan (binary)

	The result of calling the dependency solver, assuming that the
Hackage index, local cabal.project file, and local cabal
files are unmodified. (Notably, we do NOT have to dependency solve
again if new build products are stored in the global store; the
invocation of the dependency solver is independent of what is
already available in the store.)

	source-hashes (binary)

	The hashes of all local source files. When all local source files of
a local package are unchanged, cabal v2-build will skip
invoking setup build entirely (saving us from a possibly
expensive call to ghc --make). The full list of source files
participating in compilation are determined using
setup sdist --list-sources (thus, if you do not list all your
source files in a Cabal file, you may fail to recompile when you
edit them.)

	config (same format as cabal.project)

	The full project configuration, merged from cabal.project (and
friends) as well as the command line arguments.

	compiler (binary)

	The configuration of the compiler being used to build the project.

	improved-plan (binary)

	Like solver-plan, but with all non-inplace packages improved
into pre-existing copies from the store.

	plan.json (JSON)

	A JSON serialization of the computed install plan intended
for integrating cabal with external tooling.
The cabal-plan [http://hackage.haskell.org/package/cabal-plan]
package provides a library for parsing plan.json files into a
Haskell data structure as well as an example tool showing possible
applications.

Todo

Document JSON schema (including version history of schema)

Note that every package also has a local cache managed by the Cabal
build system, e.g., in $distdir/cache.

There is another useful file in dist-newstyle/cache,
plan.json, which is a JSON serialization of the computed install
plan and is intended for integrating with external tooling.

5.4. Commands

We now give an in-depth description of all the commands, describing the
arguments and flags they accept.

5.4.1. cabal v2-configure

cabal v2-configure takes a set of arguments and writes a
cabal.project.local file based on the flags passed to this command.
cabal v2-configure FLAGS; cabal new-build is roughly equivalent to
cabal v2-build FLAGS, except that with new-configure the flags
are persisted to all subsequent calls to v2-build.

cabal v2-configure is intended to be a convenient way to write out
a cabal.project.local for simple configurations; e.g.,
cabal v2-configure -w ghc-7.8 would ensure that all subsequent
builds with cabal v2-build are performed with the compiler
ghc-7.8. For more complex configuration, we recommend writing the
cabal.project.local file directly (or placing it in
cabal.project!)

cabal v2-configure inherits options from Cabal. semantics:

	Any flag accepted by ./Setup configure.

	Any flag accepted by cabal configure beyond
./Setup configure, namely --cabal-lib-version,
--constraint, --preference and --solver.

	Any flag accepted by cabal install beyond ./Setup configure.

	Any flag accepted by ./Setup haddock.

The options of all of these flags apply only to local packages in a
project; this behavior is different than that of cabal install,
which applies flags to every package that would be built. The motivation
for this is to avoid an innocuous addition to the flags of a package
resulting in a rebuild of every package in the store (which might need
to happen if a flag actually applied to every transitive dependency). To
apply options to an external package, use a package stanza in a
cabal.project file.

5.4.2. cabal v2-update

cabal v2-update updates the state of the package index. If the
project contains multiple remote package repositories it will update
the index of all of them (e.g. when using overlays).

Some examples:

$ cabal v2-update # update all remote repos
$ cabal v2-update head.hackage # update only head.hackage

5.4.3. cabal v2-build

cabal v2-build takes a set of targets and builds them. It
automatically handles building and installing any dependencies of these
targets.

A target can take any of the following forms:

	A package target: package, which specifies that all enabled
components of a package to be built. By default, test suites and
benchmarks are not enabled, unless they are explicitly requested
(e.g., via --enable-tests.)

	A component target: [package:][ctype:]component, which specifies
a specific component (e.g., a library, executable, test suite or
benchmark) to be built.

	All packages: all, which specifies all packages within the project.

	Components of a particular type: package:ctypes, all:ctypes:
which specifies all components of the given type. Where valid
ctypes are:

	libs, libraries,

	flibs, foreign-libraries,

	exes, executables,

	tests,

	benches, benchmarks.

In component targets, package: and ctype: (valid component types
are lib, flib, exe, test and bench) can be used to
disambiguate when multiple packages define the same component, or the
same component name is used in a package (e.g., a package foo
defines both an executable and library named foo). We always prefer
interpreting a target as a package name rather than as a component name.

Some example targets:

$ cabal v2-build lib:foo-pkg # build the library named foo-pkg
$ cabal v2-build foo-pkg:foo-tests # build foo-tests in foo-pkg

(There is also syntax for specifying module and file targets, but it
doesn’t currently do anything.)

Beyond a list of targets, cabal v2-build accepts all the flags that
cabal v2-configure takes. Most of these flags are only taken into
consideration when building local packages; however, some flags may
cause extra store packages to be built (for example,
--enable-profiling will automatically make sure profiling libraries
for all transitive dependencies are built and installed.)

In addition cabal v2-build accepts these flags:

	--only-configure: When given we will forgoe performing a full build and
abort after running the configure phase of each target package.

5.4.4. cabal v2-repl

cabal v2-repl TARGET loads all of the modules of the target into
GHCi as interpreted bytecode. In addition to cabal v2-build’s flags,
it takes an additional --repl-options flag.

To avoid ghci specific flags from triggering unneeded global rebuilds these
flags are now stripped from the internal configuration. As a result
--ghc-options will no longer (reliably) work to pass flags to ghci (or
other repls). Instead, you should use the new --repl-options flag to
specify these options to the invoked repl. (This flag also works on cabal
repl and Setup repl on sufficiently new versions of Cabal.)

Currently, it is not supported to pass multiple targets to v2-repl
(v2-repl will just successively open a separate GHCi session for
each target.)

It also provides a way to experiment with libraries without needing to download
them manually or to install them globally.

This command opens a REPL with the current default target loaded, and a version
of the vector package matching that specification exposed.

$ cabal v2-repl --build-depends "vector >= 0.12 && < 0.13"

Both of these commands do the same thing as the above, but only exposes base,
vector, and the vector package’s transitive dependencies even if the user
is in a project context.

$ cabal v2-repl --ignore-project --build-depends "vector >= 0.12 && < 0.13"
$ cabal v2-repl --project='' --build-depends "vector >= 0.12 && < 0.13"

This command would add vector, but not (for example) primitive, because
it only includes the packages specified on the command line (and base, which
cannot be excluded for technical reasons).

$ cabal v2-repl --build-depends vector --no-transitive-deps

5.4.5. cabal v2-run

cabal v2-run [TARGET [ARGS]] runs the executable specified by the
target, which can be a component, a package or can be left blank, as
long as it can uniquely identify an executable within the project.
Tests and benchmarks are also treated as executables.

See the v2-build section for the target syntax.

Except in the case of the empty target, the strings after it will be
passed to the executable as arguments.

If one of the arguments starts with - it will be interpreted as
a cabal flag, so if you need to pass flags to the executable you
have to separate them with --.

$ cabal v2-run target -- -a -bcd --argument

‘v2-run’ also supports running script files that use a certain format. With
a script that looks like:

#!/usr/bin/env cabal
{- cabal:
build-depends: base ^>= 4.11
 , shelly ^>= 1.8.1
-}

main :: IO ()
main = do
 ...

It can either be executed like any other script, using cabal as an
interpreter, or through this command:

$ cabal v2-run script.hs
$ cabal v2-run script.hs -- --arg1 # args are passed like this

5.4.6. cabal v2-freeze

cabal v2-freeze writes out a freeze file which records all of
the versions and flags which that are picked by the solver under the
current index and flags. Default name of this file is
cabal.project.freeze but in combination with a
--project-file=my.project flag (see project-file)
the name will be my.project.freeze.
A freeze file has the same syntax as cabal.project and looks
something like this:

constraints: HTTP ==4000.3.3,
 HTTP +warp-tests -warn-as-error -network23 +network-uri -mtl1 -conduit10,
 QuickCheck ==2.9.1,
 QuickCheck +templatehaskell,
 -- etc...

For end-user executables, it is recommended that you distribute the
cabal.project.freeze file in your source repository so that all
users see a consistent set of dependencies. For libraries, this is not
recommended: users often need to build against different versions of
libraries than what you developed against.

5.4.7. cabal v2-bench

cabal v2-bench [TARGETS] [OPTIONS] runs the specified benchmarks
(all the benchmarks in the current package by default), first ensuring
they are up to date.

5.4.8. cabal v2-test

cabal v2-test [TARGETS] [OPTIONS] runs the specified test suites
(all the test suites in the current package by default), first ensuring
they are up to date.

5.4.9. cabal v2-haddock

cabal v2-haddock [FLAGS] [TARGET] builds Haddock documentation for
the specified packages within the project.

If a target is not a library haddock-benchmarks,
haddock-executables, haddock-internal,
haddock-tests will be implied as necessary.

5.4.10. cabal v2-exec

cabal v2-exec [FLAGS] [--] COMMAND [--] [ARGS] runs the specified command
using the project’s environment. That is, passing the right flags to compiler
invocations and bringing the project’s executables into scope.

5.4.11. cabal v2-install

cabal v2-install [FLAGS] PACKAGES builds the specified packages and
symlinks/copies their executables in installdir (usually ~/.cabal/bin).

For example this command will build the latest cabal-install and symlink
its cabal executable:

$ cabal v2-install cabal-install

In addition, it’s possible to use cabal v2-install to install components
of a local project. For example, with an up-to-date Git clone of the Cabal
repository, this command will build cabal-install HEAD and symlink the
cabal executable:

$ cabal v2-install exe:cabal

Where symlinking is not possible (eg. on Windows), --install-method=copy
can be used:

$ cabal v2-install exe:cabal --install-method=copy --installdir=~/bin

Note that copied executables are not self-contained, since they might use
data-files from the store.

It is also possible to “install” libraries using the --lib flag. For
example, this command will build the latest Cabal library and install it:

$ cabal v2-install --lib Cabal

This works by managing GHC environments. By default, it is writing to the
global environment in ~/.ghc/$ARCH-$OS-$GHCVER/environments/default.
v2-install provides the --package-env flag to control which of
these environments is modified.

This command will modify the environment file in the current directory:

$ cabal v2-install --lib Cabal --package-env .

This command will modify the environment file in the ~/foo directory:

$ cabal v2-install --lib Cabal --package-env foo/

Do note that the results of the previous two commands will be overwritten by
the use of other v2-style commands, so it is not recommended to use them inside
a project directory.

This command will modify the environment in the “local.env” file in the
current directory:

$ cabal v2-install --lib Cabal --package-env local.env

This command will modify the myenv named global environment:

$ cabal v2-install --lib Cabal --package-env myenv

If you wish to create a named environment file in the current directory where
the name does not contain an extension, you must reference it as ./myenv.

You can learn more about how to use these environments in this section of the
GHC manual [https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/packages.html#package-environments].

5.4.12. cabal v2-clean

cabal v2-clean [FLAGS] cleans up the temporary files and build artifacts
stored in the dist-newstyle folder.

By default, it removes the entire folder, but it can also spare the configuration
and caches if the --save-config option is given, in which case it only removes
the build artefacts (.hi, .o along with any other temporary files generated
by the compiler, along with the build output).

5.4.13. cabal v2-sdist

cabal v2-sdist [FLAGS] [TARGETS] takes the crucial files needed to build TARGETS
and puts them into an archive format ready for upload to Hackage. These archives are stable
and two archives of the same format built from the same source will hash to the same value.

cabal v2-sdist takes the following flags:

	-l, --list-only: Rather than creating an archive, lists files that would be included.
Output is to stdout by default. The file paths are relative to the project’s root
directory.

	-o, --output-dir: Sets the output dir, if a non-default one is desired. The default is
dist-newstyle/sdist/. --output-dir - will send output to stdout
unless multiple archives are being created.

	-z, --null: Only used with --list-only. Separates filenames with a NUL
byte instead of newlines.

v2-sdist is inherently incompatible with sdist hooks, not due to implementation but due
to fundamental core invariants (same source code should result in the same tarball, byte for
byte) that must be satisfied for it to function correctly in the larger v2-build ecosystem.
autogen-modules is able to replace uses of the hooks to add generated modules, along with
the custom publishing of Haddock documentation to Hackage.

Warning

Packages that use Backpack will stop working if uploaded to
Hackage, due to issue #6005 [https://github.com/haskell/cabal/issues/6005].
While this is happening, we recommend not uploading these packages
to Hackage (and instead referencing the package directly
as a source-repository-package).

5.5. Configuring builds with cabal.project

cabal.project files support a variety of options which configure the
details of your build. The general syntax of a cabal.project file is
similar to that of a Cabal file: there are a number of fields, some of
which live inside stanzas:

packages: */*.cabal
with-compiler: /opt/ghc/8.0.1/bin/ghc

package cryptohash
 optimization: False

In general, the accepted field names coincide with the accepted command
line flags that cabal install and other commands take. For example,
cabal v2-configure --enable-profiling will write out a project
file with profiling: True.

The full configuration of a project is determined by combining the
following sources (later entries override earlier ones):

	~/.cabal/config (the user-wide global configuration)

	cabal.project (the project configuration)

	cabal.project.freeze (the output of cabal v2-freeze)

	cabal.project.local (the output of cabal v2-configure)

5.5.1. Specifying the local packages

The following top-level options specify what the local packages of a
project are:

	
packages: package location list (space or comma separated)

	
	Default value

	./*.cabal

Specifies the list of package locations which contain the local
packages to be built by this project. Package locations can take the
following forms:

	They can specify a Cabal file, or a directory containing a Cabal
file, e.g., packages: Cabal cabal-install/cabal-install.cabal.

	They can specify a glob-style wildcards, which must match one or
more (a) directories containing a (single) Cabal file, (b) Cabal
files (extension .cabal), or (c) tarballs which contain Cabal
packages (extension .tar.gz).
For example, to match all Cabal files in all
subdirectories, as well as the Cabal projects in the parent
directories foo and bar, use
packages: */*.cabal ../{foo,bar}/

	They can specify an http, https or file
URL, representing the path to a remote tarball to be downloaded
and built.

There is no command line variant of this field; see #3585 [https://github.com/haskell/cabal/issues/3585].

	
optional-packages: package location list (space or comma-separated)

	
	Default value

	./*/*.cabal

Like packages, specifies a list of package locations
containing local packages to be built. Unlike packages,
if we glob for a package, it is permissible for the glob to match against
zero packages. The intended use-case for optional-packages
is to make it so that vendored packages can be automatically picked up if
they are placed in a subdirectory, but not error if there aren’t any.

There is no command line variant of this field.

	
extra-packages: package list with version bounds (comma separated)

	[STRIKEOUT:Specifies a list of external packages from Hackage which
should be considered local packages.] (Not implemented)

There is no command line variant of this field.

All local packages are vendored, in the sense that if other packages
(including external ones from Hackage) depend on a package with the name
of a local package, the local package is preferentially used. This
motivates the default settings:

packages: ./*.cabal
optional-packages: ./*/*.cabal

…any package can be vendored simply by making a checkout in the
top-level project directory, as might be seen in this hypothetical
directory layout:

foo.cabal
foo-helper/ # local package
unix/ # vendored external package

All of these options support globs. cabal v2-build has its own glob
format:

	Anywhere in a path, as many times as you like, you can specify an
asterisk * wildcard. E.g., */*.cabal matches all .cabal
files in all immediate subdirectories. Like in glob(7), asterisks do
not match hidden files unless there is an explicit period, e.g.,
.*/foo.cabal will match .private/foo.cabal (but
*/foo.cabal will not).

	You can use braces to specify specific directories; e.g.,
{vendor,pkgs}/*.cabal matches all Cabal files in the vendor
and pkgs subdirectories.

Formally, the format described by the following BNF:

Todo

convert globbing grammar to proper ABNF [https://tools.ietf.org/html/rfc5234] syntax

FilePathGlob ::= FilePathRoot FilePathGlobRel
FilePathRoot ::= {- empty -} # relative to cabal.project
 | "/" # Unix root
 | [a-zA-Z] ":" [/\\] # Windows root
 | "~" # home directory
FilePathGlobRel ::= Glob "/" FilePathGlobRel # Unix directory
 | Glob "\\" FilePathGlobRel # Windows directory
 | Glob # file
 | {- empty -} # trailing slash
Glob ::= GlobPiece *
GlobPiece ::= "*" # wildcard
 | [^*{},/\\] * # literal string
 | "\\" [*{},] # escaped reserved character
 | "{" Glob "," ... "," Glob "}" # union (match any of these)

5.5.1.1. Specifying Packages from Remote Version Control Locations

Starting with Cabal 2.4, there is now a stanza
source-repository-package for specifying packages from an external
version control which supports the following fields:

	source-repository:type

	source-repository:location

	source-repository:tag

	source-repository:subdir

A simple example is shown below:

packages: .

source-repository-package
 type: git
 location: https://github.com/hvr/HsYAML.git
 tag: e70cf0c171c9a586b62b3f75d72f1591e4e6aaa1

source-repository-package
 type: git
 location: https://github.com/well-typed/cborg
 tag: 3d274c14ca3077c3a081ba7ad57c5182da65c8c1
 subdir: cborg

5.5.2. Global configuration options

The following top-level configuration options are not specific to any
package, and thus apply globally:

	
verbose: nat

	
--verbose=n, -vn

	
	Default value

	1

Control the verbosity of cabal commands, valid values are from 0
to 3.

The command line variant of this field is --verbose=2; a short
form -v2 is also supported.

	
jobs: nat or $ncpus

	
--jobs=n, -jn , --jobs=$ncpus

	
	Default value

	1

Run nat jobs simultaneously when building. If $ncpus is
specified, run the number of jobs equal to the number of CPUs.
Package building is often quite parallel, so turning on parallelism
can speed up build times quite a bit!

The command line variant of this field is --jobs=2; a short form
-j2 is also supported; a bare --jobs or -j is equivalent
to --jobs=$ncpus.

	
keep-going: boolean

	
--keep-going

	
	Default value

	False

If true, after a build failure, continue to build other unaffected
packages.

The command line variant of this field is --keep-going.

	
--builddir=DIR

	Specifies the name of the directory where build products for
build will be stored; defaults to dist-newstyle. If a
relative name is specified, this directory is resolved relative
to the root of the project (i.e., where the cabal.project
file lives.)

This option cannot be specified via a cabal.project file.

	
--project-file=FILE

	Specifies the name of the project file used to specify the
rest of the top-level configuration; defaults to cabal.project.
This name not only specifies the name of the main project file,
but also the auxiliary project files cabal.project.freeze
and cabal.project.local; for example, if you specify
--project-file=my.project, then the other files that will
be probed are my.project.freeze and my.project.local.

If the specified project file is a relative path, we will
look for the file relative to the current working directory,
and then for the parent directory, until the project file is
found or we have hit the top of the user’s home directory.

This option cannot be specified via a cabal.project file.

	
--store-dir=DIR

	Specifies the name of the directory of the global package store.

5.5.3. Solver configuration options

The following settings control the behavior of the dependency solver:

	
constraints: constraints list (comma separated)

	
--constraint="pkg > 2.0"

	Add extra constraints to the version bounds, flag settings,
and other properties a solver can pick for a
package. For example:

constraints: bar == 2.1

A package can be specified multiple times in constraints, in
which case the specified constraints are intersected. This is
useful, since the syntax does not allow you to specify multiple
constraints at once. For example, to specify both version bounds and
flag assignments, you would write:

constraints: bar == 2.1,
 bar +foo -baz

Valid constraints take the same form as for the constraint
command line option.

	
preferences: preference (comma separated)

	
--preference="pkg > 2.0"

	Like constraints, but the solver will attempt to satisfy
these preferences on a best-effort basis. The resulting install is locally
optimal with respect to preferences; specifically, no single package
could be replaced with a more preferred version that still satisfies
the hard constraints.

Operationally, preferences can cause the solver to attempt certain
version choices of a package before others, which can improve
dependency solver runtime.

One way to use preferences is to take a known working set of
constraints (e.g., via cabal v2-freeze) and record them as
preferences. In this case, the solver will first attempt to use this
configuration, and if this violates hard constraints, it will try to
find the minimal number of upgrades to satisfy the hard constraints
again.

The command line variant of this field is
--preference="pkg >= 2.0"; to specify multiple preferences, pass
the flag multiple times.

	
allow-newer: none, all or list of scoped package names (space or comma separated)

	
--allow-newer , --allow-newer=[none, all , [scope:][^]pkg]

	
	Default value

	none

Allow the solver to pick an newer version of some packages than
would normally be permitted by than the build-depends bounds
of packages in the install plan. This option may be useful if the
dependency solver cannot otherwise find a valid install plan.

For example, to relax pkgs build-depends upper bound on
dep-pkg, write a scoped package name of the form:

allow-newer: pkg:dep-pkg

If the scope shall be limited to specific releases of pkg, the
extended form as in

allow-newer: pkg-1.2.3:dep-pkg, pkg-1.1.2:dep-pkg

can be used to limit the relaxation of dependencies on
dep-pkg by the pkg-1.2.3 and pkg-1.1.2 releases only.

The scoped syntax is recommended, as it is often only a single package
whose upper bound is misbehaving. In this case, the upper bounds of
other packages should still be respected; indeed, relaxing the bound
can break some packages which test the selected version of packages.

The syntax also allows to prefix the dependee package with a
modifier symbol to modify the scope/semantic of the relaxation
transformation in a additional ways. Currently only one modifier
symbol is defined, i.e. ^ (i.e. caret) which causes the
relaxation to be applied only to ^>= operators and leave all other
version operators untouched.

However, in some situations (e.g., when attempting to build packages
on a new version of GHC), it is useful to disregard all
upper-bounds, with respect to a package or all packages. This can be
done by specifying just a package name, or using the keyword all
to specify all packages:

-- Disregard upper bounds involving the dependencies on
-- packages bar, baz. For quux only, relax
-- 'quux ^>= ...'-style constraints only.
allow-newer: bar, baz, ^quux

-- Disregard all upper bounds when dependency solving
allow-newer: all

-- Disregard all `^>=`-style upper bounds when dependency solving
allow-newer: ^all

For consistency, there is also the explicit wildcard scope syntax
* (or its alphabetic synonym all). Consequently, the
examples above are equivalent to the explicitly scoped variants:

allow-newer: all:bar, *:baz, *:^quux

allow-newer: *:*
allow-newer: all:all

allow-newer: *:^*
allow-newer: all:^all

In order to ignore all bounds specified by a package pkg-1.2.3
you can combine scoping with a right-hand-side wildcard like so

-- Disregard any upper bounds specified by pkg-1.2.3
allow-newer: pkg-1.2.3:*

-- Disregard only `^>=`-style upper bounds in pkg-1.2.3
allow-newer: pkg-1.2.3:^*

allow-newer is often used in conjunction with a constraint
(in the cfg-field:constraints field) forcing the usage of a specific,
newer version of a package.

The command line variant of this field is e.g. --allow-newer=bar. A
bare --allow-newer is equivalent to --allow-newer=all.

	
allow-older: none, all, list of scoped package names (space or comma separated)

	
--allow-older , --allow-older=[none, all , [scope:][^]pkg]

	
	Since

	Cabal 2.0

	Default value

	none

Like allow-newer, but applied to lower bounds rather than
upper bounds.

The command line variant of this field is --allow-older=all. A
bare --allow-older is equivalent to --allow-older=all.

	
index-state: HEAD, unix-timestamp, ISO8601 UTC timestamp.

	
	Since

	Cabal 2.0

	Default value

	HEAD

This allows to change the source package index state the solver uses
to compute install-plans. This is particularly useful in
combination with freeze-files in order to also freeze the state the
package index was in at the time the install-plan was frozen.

-- UNIX timestamp format example
index-state: @1474739268

-- ISO8601 UTC timestamp format example
-- This format is used by 'cabal v2-configure'
-- for storing `--index-state` values.
index-state: 2016-09-24T17:47:48Z

	
reject-unconstrained-dependencies: all, none

	
--reject-unconstrained-dependencies=[all|none]

	
	Default value

	none

	Since

	2.6

By default, the dependency solver can include any package that it’s
aware of in a build plan. If you wish to restrict the build plan to
a closed set of packages (e.g., from a freeze file), use this flag.

When set to all, all non-local packages that aren’t goals must be
explicitly constrained. When set to none, the solver will
consider all packages.

5.5.4. Package configuration options

Package options affect the building of specific packages. There are three
ways a package option can be specified:

	They can be specified at the top-level, in which case they apply only
to local package, or

	They can be specified inside a package stanza, in which case they
apply to the build of the package, whether or not it is local or
external.

	They can be specified inside an package * stanza, in which case they
apply to all packages, local ones from the project and also external
dependencies.

For example, the following options specify that optimization
should be turned off for all local packages, and that bytestring (possibly
an external dependency) should be built with -fno-state-hack:

optimization: False

package bytestring
 ghc-options: -fno-state-hack

ghc-options is not specifically described in this documentation,
but is one of many fields for configuring programs. They take the form
progname-options and progname-location, and
can only be set inside package stanzas. (TODO: They are not supported
at top-level, see #3579 [https://github.com/haskell/cabal/issues/3579].)

At the moment, there is no way to specify an option to apply to all
external packages or all inplace packages. Additionally, it is only
possible to specify these options on the command line for all local
packages (there is no per-package command line interface.)

Some flags were added by more recent versions of the Cabal library. This
means that they are NOT supported by packages which use Custom setup
scripts that require a version of the Cabal library older than when the
feature was added.

	
flags: list of +flagname or -flagname (space separated)

	
--flags="+foo -bar", -ffoo , -f-bar

	Force all flags specified as +flagname to be true, and all flags
specified as -flagname to be false. For example, to enable the
flag foo and disable bar, set:

flags: +foo -bar

If there is no leading punctuation, it is assumed that the flag
should be enabled; e.g., this is equivalent:

flags: foo -bar

Flags are per-package, so it doesn’t make much sense to specify
flags at the top-level, unless you happen to know that all of your
local packages support the same named flags. If a flag is not
supported by a package, it is ignored.

See also the solver configuration field constraints.

The command line variant of this flag is --flags. There is also
a shortened form -ffoo -f-bar.

A common mistake is to say cabal v2-build -fhans, where
hans is a flag for a transitive dependency that is not in the
local package; in this case, the flag will be silently ignored. If
haskell-tor is the package you want this flag to apply to, try
--constraint="haskell-tor +hans" instead.

	
with-compiler: executable

	
--with-compiler=executable

	Specify the path to a particular compiler to be used. If not an
absolute path, it will be resolved according to the PATH
environment. The type of the compiler (GHC, GHCJS, etc) must be
consistent with the setting of the compiler field.

The most common use of this option is to specify a different version
of your compiler to be used; e.g., if you have ghc-7.8 in your
path, you can specify with-compiler: ghc-7.8 to use it.

This flag also sets the default value of with-hc-pkg, using
the heuristic that it is named ghc-pkg-7.8 (if your executable name
is suffixed with a version number), or is the executable named
ghc-pkg in the same directory as the ghc directory. If this
heuristic does not work, set with-hc-pkg explicitly.

For inplace packages, cabal v2-build maintains a separate build
directory for each version of GHC, so you can maintain multiple
build trees for different versions of GHC without clobbering each
other.

At the moment, it’s not possible to set with-compiler on a
per-package basis, but eventually we plan on relaxing this
restriction. If this is something you need, give us a shout.

The command line variant of this flag is
--with-compiler=ghc-7.8; there is also a short version
-w ghc-7.8.

	
with-hc-pkg: executable

	
--with-hc-pkg=executable

	Specify the path to the package tool, e.g., ghc-pkg. This
package tool must be compatible with the compiler specified by
with-compiler (generally speaking, it should be precisely
the tool that was distributed with the compiler). If this option is
omitted, the default value is determined from with-compiler.

The command line variant of this flag is
--with-hc-pkg=ghc-pkg-7.8.

	
optimization: nat

	
--enable-optimization

	
--disable-optimization

	
	Default value

	1

Build with optimization. This is appropriate for production use,
taking more time to build faster libraries and programs.

The optional nat value is the optimisation level. Some compilers
support multiple optimisation levels. The range is 0 to 2. Level 0
disables optimization, level 1 is the default. Level 2 is higher
optimisation if the compiler supports it. Level 2 is likely to lead
to longer compile times and bigger generated code. If you are not
planning to run code, turning off optimization will lead to better
build times and less code to be rebuilt when a module changes.

When optimizations are enabled, Cabal passes -O2 to the C compiler.

We also accept True (equivalent to 1) and False (equivalent
to 0).

Note that as of GHC 8.0, GHC does not recompile when optimization
levels change (see GHC #10923 [http://ghc.haskell.org/trac/ghc/ticket/10923]), so if
you change the optimization level for a local package you may need
to blow away your old build products in order to rebuild with the
new optimization level.

The command line variant of this flag is -O2 (with -O1
equivalent to -O). There are also long-form variants
--enable-optimization and --disable-optimization.

	
configure-options: args (space separated)

	
--configure-option=arg

	A list of extra arguments to pass to the external ./configure
script, if one is used. This is only useful for packages which have
the Configure build type. See also the section on
system-dependent
parameters.

The command line variant of this flag is --configure-option=arg,
which can be specified multiple times to pass multiple options.

	
compiler: ghc, ghcjs, jhc, lhc, uhc or haskell-suite

	
--compiler=compiler

	
	Default value

	ghc

Specify which compiler toolchain to be used. This is independent of
with-compiler, because the choice of toolchain affects Cabal’s
build logic.

The command line variant of this flag is --compiler=ghc.

	
tests: boolean

	
--enable-tests

	
--disable-tests

	
	Default value

	False

Force test suites to be enabled. For most users this should not be
needed, as we always attempt to solve for test suite dependencies,
even when this value is False; furthermore, test suites are
automatically enabled if they are requested as a built target.

The command line variant of this flag is --enable-tests and
--disable-tests.

	
benchmarks: boolean

	
--enable-benchmarks

	
--disable-benchmarks

	
	Default value

	False

Force benchmarks to be enabled. For most users this should not be
needed, as we always attempt to solve for benchmark dependencies,
even when this value is False; furthermore, benchmarks are
automatically enabled if they are requested as a built target.

The command line variant of this flag is --enable-benchmarks and
--disable-benchmarks.

	
extra-prog-path: paths (newline or comma separated)

	
--extra-prog-path=PATH

	
	Since

	Cabal 1.18

A list of directories to search for extra required programs. Most
users should not need this, as programs like happy and alex
will automatically be installed and added to the path. This can be
useful if a Custom setup script relies on an exotic extra
program.

The command line variant of this flag is --extra-prog-path=PATH,
which can be specified multiple times.

	
run-tests: boolean

	
--run-tests

	
	Default value

	False

Run the package test suite upon installation. This is useful for
saying “When this package is installed, check that the test suite
passes, terminating the rest of the build if it is broken.”

Warning

One deficiency: the run-tests setting of a package is NOT
recorded as part of the hash, so if you install something without
run-tests and then turn on run-tests, we won’t
subsequently test the package. If this is causing you problems, give
us a shout.

The command line variant of this flag is --run-tests.

	
debug-info: integer

	
--enable-debug-info=⟨n⟩

	
--disable-debug-info

	
	Since

	Cabal 1.22

	Default value

	False

If the compiler (e.g., GHC 7.10 and later) supports outputing OS
native debug info (e.g., DWARF), setting debug-info: True will
instruct it to do so. See the GHC wiki page on DWARF [http://ghc.haskell.org/trac/ghc/wiki/DWARF]
for more information about this feature.

(This field also accepts numeric syntax, but until GHC 8.2 this didn’t
do anything.)

The command line variant of this flag is --enable-debug-info and
--disable-debug-info.

	
split-sections: boolean

	
--enable-split-sections

	
--disable-split-sections

	
	Since

	Cabal 2.2

	Default value

	False

Use the GHC -split-sections feature when building the library. This
reduces the final size of the executables that use the library by
allowing them to link with only the bits that they use rather than
the entire library. The downside is that building the library takes
longer and uses a bit more memory.

This feature is supported by GHC 8.0 and later.

The command line variant of this flag is --enable-split-sections and
--disable-split-sections.

	
split-objs: boolean

	
--enable-split-objs

	
--disable-split-objs

	
	Default value

	False

Use the GHC -split-objs feature when building the library. This
reduces the final size of the executables that use the library by
allowing them to link with only the bits that they use rather than
the entire library. The downside is that building the library takes
longer and uses considerably more memory.

It is generally recommend that you use split-sections instead
of split-objs where possible.

The command line variant of this flag is --enable-split-objs and
--disable-split-objs.

	
executable-stripping: boolean

	
--enable-executable-stripping

	
--disable-executable-stripping

	
	Default value

	True

When installing binary executable programs, run the strip
program on the binary. This can considerably reduce the size of the
executable binary file. It does this by removing debugging
information and symbols.

Not all Haskell implementations generate native binaries. For such
implementations this option has no effect.

If debug-info is set explicitly then executable-stripping is set
to False as otherwise all the debug symbols will be stripped.

The command line variant of this flag is
--enable-executable-stripping and
--disable-executable-stripping.

	
library-stripping: boolean

	
--enable-library-stripping

	
--disable-library-stripping

	
	Since

	Cabal 1.20

When installing binary libraries, run the strip program on the
binary, saving space on the file system. See also
executable-stripping.

If debug-info is set explicitly then library-stripping is set
to False as otherwise all the debug symbols will be stripped.

The command line variant of this flag is
--enable-library-stripping and --disable-library-stripping.

	
program-prefix: prefix

	
--program-prefix=prefix

	[STRIKEOUT:Prepend prefix to installed program names.] (Currently
implemented in a silly and not useful way. If you need this to work
give us a shout.)

prefix may contain the following path variables: $pkgid,
$pkg, $version, $compiler, $os, $arch, $abi,
$abitag

The command line variant of this flag is --program-prefix=foo-.

	
program-suffix: suffix

	
--program-suffix=suffix

	[STRIKEOUT:Append suffix to installed program names.] (Currently
implemented in a silly and not useful way. If you need this to work
give us a shout.)

The most obvious use for this is to append the program’s version
number to make it possible to install several versions of a program
at once: program-suffix: $version.

suffix may contain the following path variables: $pkgid,
$pkg, $version, $compiler, $os, $arch, $abi,
$abitag

The command line variant of this flag is
--program-suffix='$version'.

	
shared: boolean

	
--enable-shared

	
--disable-shared

	
	Default value

	False

Build shared library. This implies a separate compiler run to
generate position independent code as required on most platforms.

The command line variant of this flag is --enable-shared and
--disable-shared.

	
executable-dynamic: boolean

	
--enable-executable-dynamic

	
--disable-executable-dynamic

	
	Default value

	False

Link executables dynamically. The executable’s library dependencies
should be built as shared objects. This implies shared: True
unless shared: False is explicitly specified.

The command line variant of this flag is
--enable-executable-dynamic and
--disable-executable-dynamic.

	
library-for-ghci: boolean

	
--enable-library-for-ghci

	
--disable-library-for-ghci

	
	Default value

	True

Build libraries suitable for use with GHCi. This involves an extra
linking step after the build.

Not all platforms support GHCi and indeed on some platforms, trying
to build GHCi libs fails. In such cases, consider setting
library-for-ghci: False.

The command line variant of this flag is
--enable-library-for-ghci and --disable-library-for-ghci.

	
relocatable:

	
--relocatable

	
	Since

	Cabal 1.22

	Default value

	False

[STRIKEOUT:Build a package which is relocatable.] (TODO: It is not
clear what this actually does, or if it works at all.)

The command line variant of this flag is --relocatable.

	
static: boolean

	
--enable-static

	
--disable-static

	
	Default value

	False

Roll this and all dependent libraries into a combined .a archive.
This uses GHCs -staticlib flag, which is available for iOS and with
GHC 8.4 and later for other platforms as well.

	
executable-static: boolean

	
--enable-executable-static

	
--disable-executable-static

	
	Default value

	False

Build fully static executables.
This link all dependent libraries into executables statically,
including libc.
This passes -static and -optl=-static to GHC.

	
extra-include-dirs: directories (comma or newline separated list)

	
--extra-include-dirs=DIR

	An extra directory to search for C header files. You can use this
flag multiple times to get a list of directories.

You might need to use this flag if you have standard system header
files in a non-standard location that is not mentioned in the
package’s .cabal file. Using this option has the same affect as
appending the directory dir to the include-dirs field in each
library and executable in the package’s .cabal file. The
advantage of course is that you do not have to modify the package at
all. These extra directories will be used while building the package
and for libraries it is also saved in the package registration
information and used when compiling modules that use the library.

The command line variant of this flag is
--extra-include-dirs=DIR, which can be specified multiple times.

	
extra-lib-dirs: directories (comma or newline separated list)

	
--extra-lib-dirs=DIR

	An extra directory to search for system libraries files.

The command line variant of this flag is --extra-lib-dirs=DIR,
which can be specified multiple times.

	
extra-framework-dirs: directories (comma or newline separated list)

	
--extra-framework-dirs=DIR

	An extra directory to search for frameworks (OS X only).

You might need to use this flag if you have standard system
libraries in a non-standard location that is not mentioned in the
package’s .cabal file. Using this option has the same affect as
appending the directory dir to the extra-lib-dirs field in
each library and executable in the package’s .cabal file. The
advantage of course is that you do not have to modify the package at
all. These extra directories will be used while building the package
and for libraries it is also saved in the package registration
information and used when compiling modules that use the library.

The command line variant of this flag is
--extra-framework-dirs=DIR, which can be specified multiple
times.

	
profiling: boolean

	
--enable-profiling

	
--disable-profiling

	
	Since

	Cabal 1.22

	Default value

	False

Build libraries and executables with profiling enabled (for
compilers that support profiling as a separate mode). It is only
necessary to specify profiling for the specific package you
want to profile; cabal v2-build will ensure that all of its
transitive dependencies are built with profiling enabled.

To enable profiling for only libraries or executables, see
library-profiling and executable-profiling.

For useful profiling, it can be important to control precisely what
cost centers are allocated; see profiling-detail.

The command line variant of this flag is --enable-profiling and
--disable-profiling.

	
profiling-detail: level

	
--profiling-detail=level

	
	Since

	Cabal 1.24

Some compilers that support profiling, notably GHC, can allocate
costs to different parts of the program and there are different
levels of granularity or detail with which this can be done. In
particular for GHC this concept is called “cost centers”, and GHC
can automatically add cost centers, and can do so in different ways.

This flag covers both libraries and executables, but can be
overridden by the library-profiling-detail field.

Currently this setting is ignored for compilers other than GHC. The
levels that cabal currently supports are:

	default

	For GHC this uses exported-functions for libraries and
toplevel-functions for executables.

	none

	No costs will be assigned to any code within this component.

	exported-functions

	Costs will be assigned at the granularity of all top level
functions exported from each module. In GHC, this
is for non-inline functions. Corresponds to -fprof-auto-exported.

	toplevel-functions

	Costs will be assigned at the granularity of all top level
functions in each module, whether they are exported from the
module or not. In GHC specifically, this is for non-inline
functions. Corresponds to -fprof-auto-top.

	all-functions

	Costs will be assigned at the granularity of all functions in
each module, whether top level or local. In GHC specifically,
this is for non-inline toplevel or where-bound functions or
values. Corresponds to -fprof-auto.

The command line variant of this flag is
--profiling-detail=none.

	
library-profiling-detail: level

	
--library-profiling-detail=level

	
	Since

	Cabal 1.24

Like profiling-detail, but applied only to libraries

The command line variant of this flag is
--library-profiling-detail=none.

	
library-vanilla: boolean

	
--enable-library-vanilla

	
--disable-library-vanilla

	
	Default value

	True

Build ordinary libraries (as opposed to profiling libraries).
Mostly, you can set this to False to avoid building ordinary
libraries when you are profiling.

The command line variant of this flag is
--enable-library-vanilla and --disable-library-vanilla.

	
library-profiling: boolean

	
--enable-library-profiling

	
--disable-library-profiling

	
	Since

	Cabal 1.22

	Default value

	False

Build libraries with profiling enabled. You probably want
to use profiling instead.

The command line variant of this flag is
--enable-library-profiling and --disable-library-profiling.

	
executable-profiling: boolean

	
--enable-executable-profiling

	
--disable-executable-profiling

	
	Since

	Cabal 1.22

	Default value

	False

Build executables with profiling enabled. You probably want
to use profiling instead.

The command line variant of this flag is
--enable-executable-profiling and
--disable-executable-profiling.

	
coverage: boolean

	
--enable-coverage

	
--disable-coverage

	
	Since

	Cabal 1.22

	Default value

	False

Build libraries and executables (including test suites) with Haskell
Program Coverage enabled. Running the test suites will automatically
generate coverage reports with HPC.

The command line variant of this flag is --enable-coverage and
--disable-coverage.

	
library-coverage: boolean

	
--enable-library-coverage

	
--disable-library-coverage

	
	Deprecated

	

	Since

	Cabal 1.22

	Default value

	False

Deprecated, use coverage.

The command line variant of this flag is
--enable-library-coverage and --disable-library-coverage.

	
documentation: boolean

	
--enable-documentation

	
--disable-documentation

	
	Default value

	False

Enables building of Haddock documentation

The command line variant of this flag is --enable-documentation
and --disable-documentation.

documentation: true does not imply haddock-benchmarks,
haddock-executables, haddock-internal or
haddock-tests. These need to be enabled separately if
desired.

	
doc-index-file: templated path

	
--doc-index-file=TEMPLATE

	A central index of Haddock API documentation (template cannot use
$pkgid), which should be updated as documentation is built.

The command line variant of this flag is
--doc-index-file=TEMPLATE

The following commands are equivalent to ones that would be passed when
running setup haddock. (TODO: Where does the documentation get put.)

	
haddock-hoogle: boolean

	
	Default value

	False

Generate a text file which can be converted by Hoogle [http://www.haskell.org/hoogle/]
into a database for searching. This is equivalent to running haddock
with the --hoogle flag.

The command line variant of this flag is --hoogle (for the
haddock command).

	
haddock-html: boolean

	
	Default value

	True

Build HTML documentation.

The command line variant of this flag is --html (for the
haddock command).

	
haddock-html-location: templated path

	
--html-location=TEMPLATE

	Specify a template for the location of HTML documentation for
prerequisite packages. The substitutions are applied to the template
to obtain a location for each package, which will be used by
hyperlinks in the generated documentation. For example, the
following command generates links pointing at [Hackage] pages:

html-location: http://hackage.haskell.org/packages/archive/$pkg/latest/doc/html

The command line variant of this flag is --html-location (for
the haddock subcommand).

--html-location='http://hackage.haskell.org/packages/archive/$pkg/latest/doc/html'

Here the argument is quoted to prevent substitution by the shell. If
this option is omitted, the location for each package is obtained
using the package tool (e.g. ghc-pkg).

	
haddock-executables: boolean

	
	Default value

	False

Run haddock on all executable programs.

The command line variant of this flag is --executables (for the
haddock subcommand).

	
haddock-tests: boolean

	
	Default value

	False

Run haddock on all test suites.

The command line variant of this flag is --tests (for the
haddock subcommand).

	
haddock-benchmarks: boolean

	
	Default value

	False

Run haddock on all benchmarks.

The command line variant of this flag is --benchmarks (for the
haddock subcommand).

	
haddock-all: boolean

	
	Default value

	False

Run haddock on all components.

The command line variant of this flag is --all (for the
haddock subcommand).

	
haddock-internal: boolean

	
	Default value

	False

Build haddock documentation which includes unexposed modules and
symbols.

The command line variant of this flag is --internal (for the
haddock subcommand).

	
haddock-css: path

	The CSS file that should be used to style the generated
documentation (overriding haddock’s default.)

The command line variant of this flag is --css (for the
haddock subcommand).

	
haddock-hyperlink-source: boolean

	
	Default value

	False

Generated hyperlinked source code using HsColour [http://www.cs.york.ac.uk/fp/darcs/hscolour/], and have
Haddock documentation link to it.

The command line variant of this flag is --hyperlink-source (for
the haddock subcommand).

	
haddock-hscolour-css: path

	The CSS file that should be used to style the generated hyperlinked
source code (from HsColour [http://www.cs.york.ac.uk/fp/darcs/hscolour/]).

The command line variant of this flag is --hscolour-css (for the
haddock subcommand).

	
haddock-contents-location: URL

	A baked-in URL to be used as the location for the contents page.

The command line variant of this flag is --contents-location
(for the haddock subcommand).

	
haddock-keep-temp-files: boolean

	Keep temporary files.

The command line variant of this flag is --keep-temp-files (for
the haddock subcommand).

5.5.5. Advanced global configuration options

	
write-ghc-environment-files: always, never, or ghc8.4.4+

	
--write-ghc-environment-files=policy

	
	Default value

	never

Whether a GHC package environment file [https://downloads.haskell.org/~ghc/master/users-guide/packages.html#package-environments]
should be created after a successful build.

Since Cabal 3.0, defaults to never. Before that, defaulted to
creating them only when compiling with GHC 8.4.4 and older (GHC
8.4.4 is the first version [https://ghc.haskell.org/trac/ghc/ticket/13753] that supports
the -package-env - option that allows ignoring the package
environment files).

	
http-transport: curl, wget, powershell, or plain-http

	
--http-transport=transport

	
	Default value

	curl

Set a transport to be used when making http(s) requests.

The command line variant of this field is --http-transport=curl.

	
ignore-expiry: boolean

	
--ignore-expiry

	
	Default value

	False

If True, we will ignore expiry dates on metadata from Hackage.

In general, you should not set this to True as it will leave you
vulnerable to stale cache attacks. However, it may be temporarily
useful if the main Hackage server is down, and we need to rely on
mirrors which have not been updated for longer than the expiry
period on the timestamp.

The command line variant of this field is --ignore-expiry.

	
remote-repo-cache: directory

	
--remote-repo-cache=DIR

	
	Default value

	~/.cabal/packages

[STRIKEOUT:The location where packages downloaded from remote
repositories will be cached.] Not implemented yet.

The command line variant of this flag is
--remote-repo-cache=DIR.

	
logs-dir: directory

	
--logs-dir=DIR

	
	Default value

	~/.cabal/logs

[STRIKEOUT:The location where build logs for packages are stored.]
Not implemented yet.

The command line variant of this flag is --logs-dir=DIR.

	
build-summary: template filepath

	
--build-summary=TEMPLATE

	
	Default value

	~/.cabal/logs/build.log

[STRIKEOUT:The file to save build summaries. Valid variables which
can be used in the path are $pkgid, $compiler, $os and
$arch.] Not implemented yet.

The command line variant of this flag is
--build-summary=TEMPLATE.

	
local-repo: directory

	
--local-repo=DIR

	
	Deprecated

	

[STRIKEOUT:The location of a local repository.] Deprecated. See
“Legacy repositories.”

The command line variant of this flag is --local-repo=DIR.

	
world-file: path

	
--world-file=FILE

	
	Deprecated

	

[STRIKEOUT:The location of the world file.] Deprecated.

The command line variant of this flag is --world-file=FILE.

Undocumented fields: root-cmd, symlink-bindir, build-log,
remote-build-reporting, report-planned-failure, one-shot,
offline.

Most users generally won’t need these.

	
solver: modular

	
--solver=modular

	This field is reserved to allow the specification of alternative
dependency solvers. At the moment, the only accepted option is
modular.

The command line variant of this field is --solver=modular.

	
max-backjumps: nat

	
--max-backjumps=N

	
	Default value

	4000

Maximum number of backjumps (backtracking multiple steps) allowed
while solving. Set -1 to allow unlimited backtracking, and 0 to
disable backtracking completely.

The command line variant of this field is --max-backjumps=4000.

	
reorder-goals: boolean

	
--reorder-goals

	
--no-reorder-goals

	
	Default value

	False

When enabled, the solver will reorder goals according to certain
heuristics. Slows things down on average, but may make backtracking
faster for some packages. It’s unlikely to help for small projects,
but for big install plans it may help you find a plan when otherwise
this is not possible. See #1780 [https://github.com/haskell/cabal/issues/1780] for more commentary.

The command line variant of this field is --(no-)reorder-goals.

	
count-conflicts: boolean

	
--count-conflicts

	
--no-count-conflicts

	
	Default value

	True

Try to speed up solving by preferring goals that are involved in a
lot of conflicts.

The command line variant of this field is
--(no-)count-conflicts.

	
fine-grained-conflicts: boolean

	
--fine-grained-conflicts

	
--no-fine-grained-conflicts

	
	Default value

	True

When enabled, the solver will skip a version of a package if it does not
resolve any of the conflicts encountered in the last version of that
package. For example, if foo-1.2 depended on bar, and the solver
couldn’t find consistent versions for bar’s dependencies, then the
solver would skip foo-1.1 if it also depended on bar.

The command line variant of this field is
--(no-)fine-grained-conflicts.

	
minimize-conflict-set: boolean

	
--minimize-conflict-set

	
--no-minimize-conflict-set

	
	Default value

	False

When there is no solution, try to improve the solver error message
by finding a minimal conflict set. This option may increase run
time significantly, so it is off by default.

The command line variant of this field is
--(no-)minimize-conflict-set.

	
strong-flags: boolean

	
--strong-flags

	
--no-strong-flags

	
	Default value

	False

Do not defer flag choices. (TODO: Better documentation.)

The command line variant of this field is --(no-)strong-flags.

	
allow-boot-library-installs: boolean

	
--allow-boot-library-installs

	
--no-allow-boot-library-installs

	
	Default value

	False

By default, the dependency solver doesn’t allow base,
ghc-prim, integer-simple, integer-gmp, and
template-haskell to be installed or upgraded. This flag
removes the restriction.

The command line variant of this field is
--(no-)allow-boot-library-installs.

	
cabal-lib-version: version

	
--cabal-lib-version=version

	This field selects the version of the Cabal library which should be
used to build packages. This option is intended primarily for
internal development use (e.g., forcing a package to build with a
newer version of Cabal, to test a new version of Cabal.) (TODO:
Specify its semantics more clearly.)

The command line variant of this field is
--cabal-lib-version=1.24.0.1.

6. Nix Integration

Nix [http://nixos.org/nix/] is a package manager popular with some Haskell developers due to its focus on reliability and reproducibility. cabal now has the ability to integrate with Nix for dependency management during local package development.

6.1. Enabling Nix Integration

To enable Nix integration, simply pass the --enable-nix global option when you call cabal. To use this option everywhere, edit your $HOME/.cabal/config file to include:

nix: True

If the package (which must be locally unpacked) provides a shell.nix or default.nix file, this flag will cause cabal to run most commands through nix-shell. If both expressions are present, shell.nix is preferred. The following commands are affected:

	cabal configure

	cabal build

	cabal repl

	cabal install (only if installing into a sandbox)

	cabal haddock

	cabal freeze

	cabal gen-bounds

	cabal run

If the package does not provide an expression, cabal runs normally.

6.2. Creating Nix Expressions

The Nix package manager is based on a lazy, pure, functional programming language; packages are defined by expressions in this language. The fastest way to create a Nix expression for a Cabal package is with the cabal2nix [https://github.com/NixOS/cabal2nix] tool. To create a shell.nix expression for the package in the current directory, run this command:

$ cabal2nix --shell ./. >shell.nix

6.3. Nix Expression Evaluation

(This section describes for advanced users how Nix expressions are evaluated.)

First, the Nix expression (shell.nix or default.nix) is instantiated with nix-instantiate. The --add-root and --indirect options are used to create an indirect root in the Cabal build directory, preventing Nix from garbage collecting the derivation while in use. The IN_NIX_SHELL environment variable is set so that builtins.getEnv works as it would in nix-shell.

Next, the commands above are run through nix-shell using the instantiated derivation. Again, --add-root and --indirect are used to prevent Nix from garbage collecting the packages in the environment. The child cabal process reads the CABAL_IN_NIX_SHELL environment variable to prevent it from spawning additional child shells.

6.4. Further Reading

The Nix manual [http://nixos.org/nix/manual/#chap-writing-nix-expressions] provides further instructions for writing Nix expressions. The Nixpkgs manual [http://nixos.org/nixpkgs/manual/#users-guide-to-the-haskell-infrastructure] describes the infrastructure provided for Haskell packages.

7. Package Description Format Specification History

Package descriptions need to specify the version of the
specification they need to be interpreted in via the
cabal-version declaration. The following list describes
changes that occurred in each version of the cabal specification
relative to the respective preceding published version.

Note

The sequence of specification version numbers is not
contiguous because it’s synchronised with the version of the
Cabal library. As a consequence, only even versions are
considered proper published versions of the specification as odd
versions of the Cabal library denote unreleased development
branches which have no stability guarantee.

7.1. cabal-version: 3.0

	Added the extra-dynamic-library-flavours field to specify non-trivial
variants of dynamic flavours. It is extra-library-flavours but for
shared libraries. Mainly useful for GHC’s RTS library.

	Free text fields (e.g. description) preserve empty lines
and indentation. In other words, you don’t need to add dots for blank lines.

	License fields use identifiers from SPDX License List version
3.6 2019-07-10

	Remove deprecated hs-source-dir, extensions and
build-tools fields.

	Common stanzas are now allowed also in the beginnning of conditional
sections. In other words, the following is valid

library
 import deps

 if flag(foo)
 import foo-deps

	Allow redundant leading or trailing commas in package fields with
optional commas, such as exposed-modules

	Require fields with optional commas to consistently omit or place
commas between elements.

	Changed the behavior of extra-bundled-libraries field. The naming convention
of dynamic library files (e.g. generated by a custom build script) has
changed. For library names prefixed with “C”, the dynamic library file
name(s) must be of the form lib<library-name>.<dyn-library-extension>*
instead of the old libC<library-name>-ghc<ghc-flavour><ghc-version>.<dyn-library-extension>

	New set-notation syntax for == and ^>= operators, see
build-depends field documentation for examples.

	Allow more whitespace in mixins field

	Wildcards are disallowed in pkgconfig-depends,
Yet the pkgconfig format is relaxed to accept e.g. versions like 1.1.0h.

	New autogen-includes for specifying install-includes
which are autogenerated (e.g. by a configure script).

	New asm-sources and asm-options fields
added for suppporting bundled foreign routines implemented in
assembler.

	New cmm-sources and cmm-options fields
added for suppporting bundled foreign primops implemented in
C–.

7.2. cabal-version: 2.4

	Wildcard matching has been expanded. All previous wildcard
expressions are still valid; some will match strictly more files
than before. Specifically:

	Double-star (**) wildcards are now accepted for recursive
matching immediately before the final slash; they must be followed
by a filename wildcard (e.g., foo/**/*.html is valid;
foo/**/bar/*.html and foo/**/**/*.html,
foo/**/bar.html are all invalid). As ** was an error in
globs before, this does not affect any existing .cabal files
that previously worked.

	Wildcards now match when the pattern’s extensions form a suffix of
the candidate file’s extension, rather than requiring strict
equality (e.g., previously *.html did not match
foo.en.html, but now it does).

	License fields use identifiers from SPDX License List version
3.2 2018-07-10

7.3. cabal-version: 2.2

	New common stanzas and import
pseudo-field added.

	New library:virtual-modules field added.

	New cxx-sources and cxx-options fields
added for suppporting bundled foreign routines implemented in C++.

	New extra-bundled-libraries field for specifying
additional custom library objects to be installed.

	Extended if control structure with support for elif keyword.

	Changed default rules of build-type field to infer
“build-type:” for “Simple”/”Custom” automatically.

	license field syntax changed to require SPDX
expression syntax (using SPDX license list version 3.0 2017-12-28).

	Allow redundant leading or trailing commas in package fields (which
require commas) such as build-depends.

7.4. cabal-version: 2.0

	New library:signatures and mixins fields
added for supporting Backpack [https://ghc.haskell.org/trac/ghc/wiki/Backpack].

	New build-tool-depends field added for adding
build-time dependencies of executable components.

	New custom-setup:autogen-modules field added for declaring modules
which are generated at build time.

	Support for new PVP [http://pvp.haskell.org/] caret-style version operator (^>=) added to
build-depends.

	Add support for new foreign-library stanza.

	Add support for internal library stanzas.

	New CPP Macro CURRENT_PACKAGE_VERSION.

7.5. cabal-version: 1.24

	New custom-setup stanza and
custom-setup:setup-depends field added for specifying dependencies
of custom Setup.hs scripts.

	CPP Macros VERSION_$pkgname and MIN_VERSION_$pkgname are now
also generated for the current package.

	New CPP Macros CURRENT_COMPONENT_ID and CURRENT_PACKAGE_KEY.

	New extra-framework-dirs field added for specifying
extra locations to find OS X frameworks.

7.6. cabal-version: 1.22

	New library:reexported-modules field.

	Support for -none version constraint added to
build-depends.

	New license type ISC added.

7.7. cabal-version: 1.20

	Add support for new license-files field for declaring
multiple license documents.

	New CPP Macro MIN_TOOL_VERSION_$buildtool.

	New license types BSD2 and MPL-2.0 added.

7.8. cabal-version: 1.18

	Add support for new extra-doc-files field for
specifying extra file assets referenced by the Haddock
documentation.

	New license type AGPL and AGPL-3 added.

	Add support for specifying a C/C++/obj-C source file in
executable:main-is field.

	Add getSysconfDir operation to Paths_ API.

7.9. cabal-version: 1.16

Todo

this needs to be researched; there were only few changes between
1.12 and 1.18;

7.10. cabal-version: 1.12

	Change syntax of cabal-version to support the new recommended
cabal-version: x.y style

 Cabal reference

 cabal.project fields |
 cabal project flags |
 package.cabal fields

 		 	

 		
 cabal.project fields	

 	[image: -]
 	
 Specifying the local packages	

 	
 	
 packages	
 Project packages.

 	
 	
 optional-packages	
 Optional project packages.

 	
 	
 extra-packages	
 Adds external pacakges as local

 	[image: -]
 	
 Global configuration options	

 	
 	
 verbose	
 Build verbosity level.

 	
 	
 jobs	
 Number of builds running in parallel.

 	
 	
 keep-going	
 Try to continue building on failure.

 	[image: -]
 	
 Solver configuration options	

 	
 	
 constraints	
 Extra dependencies constraints.

 	
 	
 preferences	
 Prefered dependency versions.

 	
 	
 allow-newer	
 Lift dependencies upper bound constraints.

 	
 	
 allow-older (since version: 2.0)	
 Lift dependency lower bound constraints.

 	
 	
 index-state (since version: 2.0)	
 Use source package index state as it existed at a previous time.

 	
 	
 reject-unconstrained-dependencies	
 Restrict the solver to packages that have constraints on them.

 	[image: -]
 	
 Package configuration options	

 	
 	
 flags	
 Enable or disable package flags.

 	
 	
 with-compiler	
 Path to compiler executable.

 	
 	
 with-hc-pkg	
 Specifies package tool.

 	
 	
 optimization	
 Build with optimization.

 	
 	
 configure-options	
 Options to pass to configure script.

 	
 	
 compiler	
 Compiler to build with.

 	
 	
 tests	
 Build tests.

 	
 	
 benchmarks	
 Build benchmarks.

 	
 	
 extra-prog-path (since version: 1.18)	
 Add directories to program search path.

 	
 	
 run-tests	
 Run package test suite upon installation.

 	
 	
 debug-info (since version: 1.22)	
 Build with debug info enabled.

 	
 	
 split-sections (since version: 2.2)	
 Use GHC's split sections feature.

 	
 	
 split-objs	
 Use GHC's split objects feature.

 	
 	
 executable-stripping	
 Strip installed programs.

 	
 	
 library-stripping (since version: 1.20)	
 Strip installed libraries.

 	
 	
 program-prefix	
 Prepend prefix to program names.

 	
 	
 program-suffix	
 Append refix to program names.

 	
 	
 shared	
 Build shared library.

 	
 	
 executable-dynamic	
 Link executables dynamically.

 	
 	
 library-for-ghci	
 Build libraries suitable for use with GHCi.

 	
 	
 relocatable (since version: 1.22)	
 Build relocatable package.

 	
 	
 static	
 Build static library.

 	
 	
 executable-static	
 Build fully static executables.

 	
 	
 extra-include-dirs	
 Adds C header search path.

 	
 	
 extra-lib-dirs	
 Adds library search directory.

 	
 	
 extra-framework-dirs	
 Adds framework search directory (OS X only).

 	
 	
 profiling (since version: 1.22)	
 Enable profiling builds.

 	
 	
 profiling-detail (since version: 1.24)	
 Profiling detail level.

 	
 	
 library-profiling-detail (since version: 1.24)	
 Libraries profiling detail level.

 	
 	
 library-vanilla	
 Build libraries without profiling.

 	
 	
 library-profiling (since version: 1.22)	
 Build libraries with profiling enabled.

 	
 	
 executable-profiling (since version: 1.22)	
 Build executables with profiling enabled.

 	
 	
 coverage (since version: 1.22)	
 Build with coverage enabled.

 	
 	
 library-coverage (deprecated)	

 	
 	
 documentation	
 Enable building of documentation.

 	
 	
 doc-index-file	
 Path to haddock templates.

 	
 	
 haddock-hoogle	
 Generate Hoogle file.

 	
 	
 haddock-html	
 Build HTML documentation.

 	
 	
 haddock-html-location	
 Haddock HTML templates location.

 	
 	
 haddock-executables	
 Generate documentation for executables.

 	
 	
 haddock-tests	
 Generate documentation for tests.

 	
 	
 haddock-benchmarks	
 Generate documentation for benchmarks.

 	
 	
 haddock-all	
 Generate documentation for everything

 	
 	
 haddock-internal	
 Generate documentation for internal modules

 	
 	
 haddock-css	
 Location of Haddoc CSS file.

 	
 	
 haddock-hyperlink-source	
 Generate hyperlinked source code for documentation

 	
 	
 haddock-hscolour-css	
 Location of CSS file for HsColour

 	
 	
 haddock-contents-location	
 URL for contents page.

 	
 	
 haddock-keep-temp-files	
 Keep temporary Haddock files.

 	[image: -]
 	
 Advanced global configuration options	

 	
 	
 write-ghc-environment-files	
 Whether a ``.ghc.environment`` should be created after a successful build.

 	
 	
 http-transport	
 Transport to use with http(s) requests.

 	
 	
 ignore-expiry	
 Ignore Hackage expiration dates.

 	
 	
 remote-repo-cache	
 Location of packages cache.

 	
 	
 logs-dir	
 Directory to store build logs.

 	
 	
 build-summary	
 Build summaries location.

 	
 	
 local-repo (deprecated)	

 	
 	
 world-file (deprecated)	

 	
 	
 solver	
 Which solver to use.

 	
 	
 max-backjumps	
 Maximum number of solver backjumps.

 	
 	
 reorder-goals	
 Allow solver to reorder goals.

 	
 	
 count-conflicts	
 Solver prefers versions with less conflicts.

 	
 	
 fine-grained-conflicts	
 Skip a version of a package if it does not resolve any conflicts
encountered in the last version (solver optimization).

 	
 	
 minimize-conflict-set	
 Try to improve the solver error message when there is no
solution.

 	
 	
 strong-flags	
 Do not defer flag choices when solving.

 	
 	
 allow-boot-library-installs	
 Allow cabal to install or upgrade any package.

 	
 	
 cabal-lib-version	
 Version of Cabal library used to build package.

 		 	

 		
 cabal project flags	

 	[image: -]
 	
 Global configuration options	

 	
 	
 --verbose	
 Build verbosity level.

 	
 	
 --jobs	
 Number of builds running in parallel.

 	
 	
 --keep-going	
 Try to continue building on failure.

 	[image: -]
 	
 Solver configuration options	

 	
 	
 --constraint	
 Extra dependencies constraints.

 	
 	
 --preference	
 Prefered dependency versions.

 	
 	
 --allow-newer	
 Lift dependencies upper bound constraints.

 	
 	
 --allow-older (since version: 2.0)	
 Lift dependency lower bound constraints.

 	
 	
 --reject-unconstrained-dependencies	
 Restrict the solver to packages that have constraints on them.

 	[image: -]
 	
 Package configuration options	

 	
 	
 --flags	
 Enable or disable package flags.

 	
 	
 --with-compiler	
 Path to compiler executable.

 	
 	
 --with-hc-pkg	
 Specifies package tool.

 	
 	
 --enable-optimization	
 Build with optimization.

 	
 	
 --disable-optimization	
 Build with optimization.

 	
 	
 --configure-option	
 Options to pass to configure script.

 	
 	
 --compiler	
 Compiler to build with.

 	
 	
 --enable-tests	
 Build tests.

 	
 	
 --disable-tests	
 Build tests.

 	
 	
 --enable-benchmarks	
 Build benchmarks.

 	
 	
 --disable-benchmarks	
 Build benchmarks.

 	
 	
 --extra-prog-path (since version: 1.18)	
 Add directories to program search path.

 	
 	
 --run-tests	
 Run package test suite upon installation.

 	
 	
 --disable-debug-info (since version: 1.22)	
 Build with debug info enabled.

 	
 	
 --enable-debug-info (since version: 1.22)	
 Build with debug info enabled.

 	
 	
 --enable-split-sections (since version: 2.2)	
 Use GHC's split sections feature.

 	
 	
 --disable-split-sections (since version: 2.2)	
 Use GHC's split sections feature.

 	
 	
 --enable-split-objs	
 Use GHC's split objects feature.

 	
 	
 --disable-split-objs	
 Use GHC's split objects feature.

 	
 	
 --disable-executable-stripping	
 Strip installed programs.

 	
 	
 --enable-executable-stripping	
 Strip installed programs.

 	
 	
 --enable-library-stripping (since version: 1.20)	
 Strip installed libraries.

 	
 	
 --disable-library-stripping (since version: 1.20)	
 Strip installed libraries.

 	
 	
 --program-prefix	
 Prepend prefix to program names.

 	
 	
 --program-suffix	
 Append refix to program names.

 	
 	
 --enable-shared	
 Build shared library.

 	
 	
 --disable-shared	
 Build shared library.

 	
 	
 --disable-executable-dynamic	
 Link executables dynamically.

 	
 	
 --enable-executable-dynamic	
 Link executables dynamically.

 	
 	
 --enable-library-for-ghci	
 Build libraries suitable for use with GHCi.

 	
 	
 --disable-library-for-ghci	
 Build libraries suitable for use with GHCi.

 	
 	
 --relocatable (since version: 1.22)	
 Build relocatable package.

 	
 	
 --disable-static	
 Build static library.

 	
 	
 --enable-static	
 Build static library.

 	
 	
 --disable-executable-static	
 Build fully static executables.

 	
 	
 --enable-executable-static	
 Build fully static executables.

 	
 	
 --extra-include-dirs	
 Adds C header search path.

 	
 	
 --extra-lib-dirs	
 Adds library search directory.

 	
 	
 --extra-framework-dirs	
 Adds framework search directory (OS X only).

 	
 	
 --disable-profiling (since version: 1.22)	
 Enable profiling builds.

 	
 	
 --enable-profiling (since version: 1.22)	
 Enable profiling builds.

 	
 	
 --profiling-detail (since version: 1.24)	
 Profiling detail level.

 	
 	
 --library-profiling-detail (since version: 1.24)	
 Libraries profiling detail level.

 	
 	
 --enable-library-vanilla	
 Build libraries without profiling.

 	
 	
 --disable-library-vanilla	
 Build libraries without profiling.

 	
 	
 --disable-library-profiling (since version: 1.22)	
 Build libraries with profiling enabled.

 	
 	
 --enable-library-profiling (since version: 1.22)	
 Build libraries with profiling enabled.

 	
 	
 --enable-executable-profiling (since version: 1.22)	
 Build executables with profiling enabled.

 	
 	
 --disable-executable-profiling (since version: 1.22)	
 Build executables with profiling enabled.

 	
 	
 --disable-coverage (since version: 1.22)	
 Build with coverage enabled.

 	
 	
 --enable-coverage (since version: 1.22)	
 Build with coverage enabled.

 	
 	
 --disable-library-coverage (deprecated)	

 	
 	
 --enable-library-coverage (deprecated)	

 	
 	
 --disable-documentation	
 Enable building of documentation.

 	
 	
 --enable-documentation	
 Enable building of documentation.

 	
 	
 --doc-index-file	
 Path to haddock templates.

 	
 	
 --html-location	
 Haddock HTML templates location.

 	[image: -]
 	
 Advanced global configuration options	

 	
 	
 --write-ghc-environment-files	
 Whether a ``.ghc.environment`` should be created after a successful build.

 	
 	
 --http-transport	
 Transport to use with http(s) requests.

 	
 	
 --ignore-expiry	
 Ignore Hackage expiration dates.

 	
 	
 --remote-repo-cache	
 Location of packages cache.

 	
 	
 --logs-dir	
 Directory to store build logs.

 	
 	
 --build-summary	
 Build summaries location.

 	
 	
 --local-repo (deprecated)	

 	
 	
 --world-file (deprecated)	

 	
 	
 --solver	
 Which solver to use.

 	
 	
 --max-backjumps	
 Maximum number of solver backjumps.

 	
 	
 --reorder-goals	
 Allow solver to reorder goals.

 	
 	
 --no-reorder-goals	
 Allow solver to reorder goals.

 	
 	
 --count-conflicts	
 Solver prefers versions with less conflicts.

 	
 	
 --no-count-conflicts	
 Solver prefers versions with less conflicts.

 	
 	
 --no-fine-grained-conflicts	
 Skip a version of a package if it does not resolve any conflicts
encountered in the last version (solver optimization).

 	
 	
 --fine-grained-conflicts	
 Skip a version of a package if it does not resolve any conflicts
encountered in the last version (solver optimization).

 	
 	
 --no-minimize-conflict-set	
 Try to improve the solver error message when there is no
solution.

 	
 	
 --minimize-conflict-set	
 Try to improve the solver error message when there is no
solution.

 	
 	
 --strong-flags	
 Do not defer flag choices when solving.

 	
 	
 --no-strong-flags	
 Do not defer flag choices when solving.

 	
 	
 --allow-boot-library-installs	
 Allow cabal to install or upgrade any package.

 	
 	
 --no-allow-boot-library-installs	
 Allow cabal to install or upgrade any package.

 	
 	
 --cabal-lib-version	
 Version of Cabal library used to build package.

 		 	

 		
 package.cabal fields	

 	[image: -]
 	
 Package properties	

 	
 	
 name	

 	
 	
 version	

 	
 	
 cabal-version	

 	
 	
 build-type	

 	
 	
 license	

 	
 	
 license-file	

 	
 	
 license-files (since version: 1.20)	

 	
 	
 copyright	

 	
 	
 author	

 	
 	
 maintainer	

 	
 	
 stability	

 	
 	
 homepage	

 	
 	
 bug-reports	

 	
 	
 package-url	

 	
 	
 synopsis	

 	
 	
 description	

 	
 	
 category	

 	
 	
 tested-with	

 	
 	
 data-files	

 	
 	
 data-dir	

 	
 	
 extra-source-files	

 	
 	
 extra-doc-files (since version: 1.18)	

 	
 	
 extra-tmp-files	

 	[image: -]
 	
 Library	

 	
 	
 library	
 Library build information.

 	
 	
 exposed-modules	

 	
 	
 virtual-modules (since version: 2.2)	

 	
 	
 exposed	

 	
 	
 visibility	

 	
 	
 reexported-modules (since version: 1.22)	

 	
 	
 signatures (since version: 2.0)	

 	[image: -]
 	
 Executables	

 	
 	
 executable	
 Executable build info section.

 	
 	
 main-is	

 	
 	
 scope (since version: 2.0)	

 	[image: -]
 	
 Test suites	

 	
 	
 test-suite	
 Test suite build information.

 	
 	
 type	

 	
 	
 main-is	
 Module containing tests main function.

 	
 	
 test-module	

 	[image: -]
 	
 Benchmarks	

 	
 	
 benchmark (since version: 1.9.2)	
 Benchmark build information.

 	
 	
 type	

 	
 	
 main-is	

 	[image: -]
 	
 Foreign libraries	

 	
 	
 foreign-library (since version: 2.0)	
 Foriegn library build information.

 	
 	
 type	

 	
 	
 options	

 	
 	
 mod-def-file	

 	
 	
 lib-version-info	

 	
 	
 lib-version-linux	

 	[image: -]
 	
 Build information	

 	
 	
 build-depends	

 	
 	
 other-modules	

 	
 	
 hs-source-dirs	

 	
 	
 default-extensions	

 	
 	
 other-extensions	

 	
 	
 extensions (removed in: 3.0; deprecated since: 1.12)	

 	
 	
 build-tool-depends (since version: 2.0)	

 	
 	
 build-tools (removed in: 3.0; deprecated since: 2.0)	

 	
 	
 buildable	

 	
 	
 ghc-options	

 	
 	
 ghc-prof-options	

 	
 	
 ghc-shared-options	

 	
 	
 includes	

 	
 	
 install-includes	

 	
 	
 include-dirs	

 	
 	
 c-sources	

 	
 	
 cxx-sources (since version: 2.2)	

 	
 	
 asm-sources (since version: 3.0)	

 	
 	
 cmm-sources (since version: 3.0)	

 	
 	
 js-sources	

 	
 	
 extra-libraries	

 	
 	
 extra-ghci-libraries	

 	
 	
 extra-bundled-libraries (since version: 2.2)	

 	
 	
 extra-lib-dirs	

 	
 	
 cc-options	

 	
 	
 cpp-options	

 	
 	
 cxx-options (since version: 2.2)	

 	
 	
 cmm-options (since version: 3.0)	

 	
 	
 asm-options (since version: 3.0)	

 	
 	
 ld-options	

 	
 	
 pkgconfig-depends	

 	
 	
 frameworks	

 	
 	
 extra-frameworks-dirs (since version: 1.24)	

 	
 	
 mixins (since version: 2.0)	

 	[image: -]
 	
 Configuration Flags	

 	
 	
 flag	
 Flag declaration.

 	
 	
 description	

 	
 	
 default	

 	
 	
 manual	

 	[image: -]
 	
 Common stanzas	

 	
 	
 common (since version: 2.2)	
 Common build info section

 	[image: -]
 	
 Source Repositories	

 	
 	
 source-repository (since version: 1.6)	

 	
 	
 type	

 	
 	
 location	

 	
 	
 module	

 	
 	
 branch	

 	
 	
 tag	

 	
 	
 subdir	

 	[image: -]
 	
 Custom setup scripts	

 	
 	
 custom-setup (since version: 1.24)	
 Custom Setup.hs build information.

 	
 	
 setup-depends (since version: 1.24)	

 	[image: -]
 	
 Autogenerated modules and includes	

 	
 	
 autogen-modules (since version: 2.0)	

 	
 	
 autogen-includes (since version: 3.0)	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

Symbols

 	
 	
 --allow-boot-library-installs

 	cabal project option

 	
 --allow-newer

 	cabal project option

 	
 --allow-newer[=pkgs], --allow-older[=pkgs]

 	setup-configure command line option

 	
 --allow-older

 	cabal project option

 	
 --benchmark-option=option

 	setup-test command line option

 	
 --benchmark-options=options

 	setup-test command line option

 	
 --bindir=dir

 	setup-configure command line option

 	
 --build-summary

 	cabal project option

 	
 --builddir=DIR

 	command line option

 	
 --builddir=dir

 	setup-test command line option

 	
 --cabal-lib-version

 	cabal project option

 	
 --cid=cid

 	setup-configure command line option

 	
 --compiler

 	cabal project option

 	
 --configure-option

 	cabal project option

 	
 --configure-option=str

 	setup-configure command line option

 	
 --constraint

 	cabal project option

 	
 --constraint=constraint

 	setup-configure command line option

 	
 --count-conflicts

 	cabal project option

 	
 --css=path

 	setup-haddock command line option

 	setup-hscolour command line option

 	
 --datadir=dir

 	setup-configure command line option

 	
 --datasubdir=dir

 	setup-configure command line option

 	
 --default-user-config=file

 	setup-configure command line option

 	
 --dependency[=pkgname=ipid]

 	setup-configure command line option

 	
 --destdir=path

 	setup-copy command line option

 	
 --disable-benchmarks

 	cabal project option

 	
 --disable-coverage

 	cabal project option

 	setup-configure command line option

 	
 --disable-debug-info

 	cabal project option

 	
 --disable-documentation

 	cabal project option

 	
 --disable-executable-dynamic

 	cabal project option

 	setup-configure command line option

 	
 --disable-executable-profiling

 	cabal project option

 	
 --disable-executable-static

 	cabal project option

 	setup-configure command line option

 	
 --disable-executable-stripping

 	cabal project option

 	setup-configure command line option

 	
 --disable-library-coverage

 	cabal project option

 	
 --disable-library-for-ghci

 	cabal project option

 	setup-configure command line option

 	
 --disable-library-profiling

 	cabal project option

 	setup-configure command line option

 	
 --disable-library-stripping

 	cabal project option

 	
 --disable-library-vanilla

 	cabal project option

 	setup-configure command line option

 	
 --disable-optimization

 	cabal project option

 	setup-configure command line option

 	
 --disable-profiling

 	cabal project option

 	setup-configure command line option

 	
 --disable-response-files

 	setup-configure command line option

 	
 --disable-shared

 	cabal project option

 	setup-configure command line option

 	
 --disable-split-objs

 	cabal project option

 	setup-configure command line option

 	
 --disable-split-sections

 	cabal project option

 	
 --disable-static

 	cabal project option

 	setup-configure command line option

 	
 --disable-tests

 	cabal project option

 	setup-configure command line option

 	
 --doc-index-file

 	cabal project option

 	
 --docdir=dir

 	setup-configure command line option

 	
 --dynlibdir=dir

 	setup-configure command line option

 	
 --enable-benchmarks

 	cabal project option

 	
 --enable-coverage

 	cabal project option

 	setup-configure command line option

 	
 --enable-debug-info

 	cabal project option

 	
 --enable-documentation

 	cabal project option

 	
 --enable-executable-dynamic

 	cabal project option

 	setup-configure command line option

 	
 --enable-executable-profiling

 	cabal project option

 	
 --enable-executable-static

 	cabal project option

 	setup-configure command line option

 	
 --enable-executable-stripping

 	cabal project option

 	setup-configure command line option

 	
 --enable-library-coverage

 	cabal project option

 	
 --enable-library-for-ghci

 	cabal project option

 	setup-configure command line option

 	
 --enable-library-profiling

 	cabal project option

 	
 --enable-library-profiling or -p

 	setup-configure command line option

 	
 --enable-library-stripping

 	cabal project option

 	
 --enable-library-vanilla

 	cabal project option

 	setup-configure command line option

 	
 --enable-optimization

 	cabal project option

 	
 --enable-optimization[=n] or -O [n]

 	setup-configure command line option

 	
 --enable-profiling

 	cabal project option

 	setup-configure command line option

 	
 --enable-shared

 	cabal project option

 	setup-configure command line option

 	
 --enable-split-objs

 	cabal project option

 	setup-configure command line option

 	
 --enable-split-sections

 	cabal project option

 	
 --enable-static

 	cabal project option

 	setup-configure command line option

 	
 --enable-tests

 	cabal project option

 	setup-configure command line option

 	
 --exact-configuration

 	setup-configure command line option

 	
 --executables

 	setup-haddock command line option

 	setup-hscolour command line option

 	
 --extra-framework-dirs

 	cabal project option

 	
 --extra-framework-dirs[=dir]

 	setup-configure command line option

 	
 	
 --extra-include-dirs

 	cabal project option

 	
 --extra-include-dirs[=dir]

 	setup-configure command line option

 	
 --extra-lib-dirs

 	cabal project option

 	
 --extra-lib-dirs[=dir]

 	setup-configure command line option

 	
 --extra-prog-path

 	cabal project option

 	
 --fine-grained-conflicts

 	cabal project option

 	
 --flags

 	cabal project option

 	
 --flags=flagspecs

 	setup-configure command line option

 	
 --gen-pkg-config[=path]

 	setup-register command line option

 	
 --gen-script

 	setup-register command line option

 	setup-unregister command line option

 	
 --ghc or -g, --jhc, --lhc, --uhc

 	setup-configure command line option

 	
 --global

 	setup-configure command line option

 	setup-install command line option

 	setup-register command line option

 	setup-unregister command line option

 	
 --help, -h or -?

 	setup command line option

 	
 --hoogle

 	setup-haddock command line option

 	
 --hscolour-css=path

 	setup-haddock command line option

 	
 --html-location

 	cabal project option

 	
 --html-location=url

 	setup-haddock command line option

 	
 --htmldir=dir

 	setup-configure command line option

 	
 --http-transport

 	cabal project option

 	
 --human-log=path

 	setup-test command line option

 	
 --hyperlink-source

 	setup-haddock command line option

 	
 --ignore-expiry

 	cabal project option

 	
 --inplace

 	setup-register command line option

 	
 --internal

 	setup-haddock command line option

 	
 --ipid=ipid

 	setup-configure command line option

 	
 --jobs

 	cabal project option

 	
 --keep-going

 	cabal project option

 	
 --libdir=dir

 	setup-configure command line option

 	
 --libexecdir=dir

 	setup-configure command line option

 	
 --libexecsubdir=dir

 	setup-configure command line option

 	
 --library-profiling-detail

 	cabal project option

 	
 --library-profiling-detail[=level]

 	setup-configure command line option

 	
 --libsubdir=dir

 	setup-configure command line option

 	
 --local-repo

 	cabal project option

 	
 --logs-dir

 	cabal project option

 	
 --machine-log=path

 	setup-test command line option

 	
 --max-backjumps

 	cabal project option

 	
 --minimize-conflict-set

 	cabal project option

 	
 --no-allow-boot-library-installs

 	cabal project option

 	
 --no-count-conflicts

 	cabal project option

 	
 --no-fine-grained-conflicts

 	cabal project option

 	
 --no-minimize-conflict-set

 	cabal project option

 	
 --no-reorder-goals

 	cabal project option

 	
 --no-strong-flags

 	cabal project option

 	
 --package-db=db

 	setup-configure command line option

 	
 --preference

 	cabal project option

 	
 --preference=preference

 	setup-configure command line option

 	
 --prefix=dir

 	setup-configure command line option

 	
 --profiling-detail

 	cabal project option

 	
 --profiling-detail[=level]

 	setup-configure command line option

 	
 --prog-option=option

 	setup-configure command line option

 	
 --prog-options=options

 	setup-configure command line option

 	
 --prog-options=options, --prog-option=option

 	setup-build command line option

 	
 --program-prefix

 	cabal project option

 	
 --program-prefix=prefix

 	setup-configure command line option

 	
 --program-suffix

 	cabal project option

 	
 --program-suffix=suffix

 	setup-configure command line option

 	
 --project-file=FILE

 	command line option

 	
 --reject-unconstrained-dependencies

 	cabal project option

 	
 --relocatable

 	cabal project option

 	
 --remote-repo-cache

 	cabal project option

 	
 --reorder-goals

 	cabal project option

 	
 --run-tests

 	cabal project option

 	
 --save-configure, -s

 	setup-clean command line option

 	
 --show-details=filter

 	setup-test command line option

 	
 --snapshot

 	setup-sdist command line option

 	
 --solver

 	cabal project option

 	
 --store-dir=DIR

 	command line option

 	
 --strong-flags

 	cabal project option

 	
 --sysconfdir=dir

 	setup-configure command line option

 	
 --test-option=option

 	setup-test command line option

 	
 --test-options=options

 	setup-test command line option

 	
 --test-wrapper=path

 	setup-test command line option

 	
 --user

 	setup-configure command line option

 	setup-install command line option

 	setup-register command line option

 	setup-unregister command line option

 	
 --verbose

 	cabal project option

 	
 --verbose=n or -v n

 	setup command line option

 	
 --with-compiler

 	cabal project option

 	
 --with-compiler=path or -w *path*

 	setup-configure command line option

 	
 --with-hc-pkg

 	cabal project option

 	
 --with-hc-pkg=path

 	setup-configure command line option

 	
 --with-prog=path

 	setup-configure command line option

 	
 --world-file

 	cabal project option

 	
 --write-ghc-environment-files

 	cabal project option

 	
 -f flagname or -f -flagname

 	setup-configure command line option

A

 	
 	
 allow-boot-library-installs

 	cabal project option

 	
 allow-newer

 	cabal project option

 	
 allow-older

 	cabal project option

 	
 	
 asm-options

 	package.cabal field

 	
 asm-sources

 	package.cabal field

 	
 author

 	package.cabal field

B

 	
 	
 benchmark:benchmark

 	package.cabal section

 	
 benchmark:main-is

 	package.cabal field

 	
 benchmark:type

 	package.cabal field

 	
 benchmarks

 	cabal project option

 	
 bug-reports

 	package.cabal field

 	
 build-depends

 	package.cabal field

 	
 	
 build-summary

 	cabal project option

 	
 build-tool-depends

 	package.cabal field

 	
 build-tools

 	package.cabal field

 	
 build-type

 	package.cabal field

 	
 buildable

 	package.cabal field

C

 	
 	
 c-sources

 	package.cabal field

 	
 cabal project option

 	--allow-boot-library-installs

 	--allow-newer

 	--allow-older

 	--build-summary

 	--cabal-lib-version

 	--compiler

 	--configure-option

 	--constraint

 	--count-conflicts

 	--disable-benchmarks

 	--disable-coverage

 	--disable-debug-info

 	--disable-documentation

 	--disable-executable-dynamic

 	--disable-executable-profiling

 	--disable-executable-static

 	--disable-executable-stripping

 	--disable-library-coverage

 	--disable-library-for-ghci

 	--disable-library-profiling

 	--disable-library-stripping

 	--disable-library-vanilla

 	--disable-optimization

 	--disable-profiling

 	--disable-shared

 	--disable-split-objs

 	--disable-split-sections

 	--disable-static

 	--disable-tests

 	--doc-index-file

 	--enable-benchmarks

 	--enable-coverage

 	--enable-debug-info

 	--enable-documentation

 	--enable-executable-dynamic

 	--enable-executable-profiling

 	--enable-executable-static

 	--enable-executable-stripping

 	--enable-library-coverage

 	--enable-library-for-ghci

 	--enable-library-profiling

 	--enable-library-stripping

 	--enable-library-vanilla

 	--enable-optimization

 	--enable-profiling

 	--enable-shared

 	--enable-split-objs

 	--enable-split-sections

 	--enable-static

 	--enable-tests

 	--extra-framework-dirs

 	--extra-include-dirs

 	--extra-lib-dirs

 	--extra-prog-path

 	--fine-grained-conflicts

 	--flags

 	--html-location

 	--http-transport

 	--ignore-expiry

 	--jobs

 	--keep-going

 	--library-profiling-detail

 	--local-repo

 	--logs-dir

 	--max-backjumps

 	--minimize-conflict-set

 	--no-allow-boot-library-installs

 	--no-count-conflicts

 	--no-fine-grained-conflicts

 	--no-minimize-conflict-set

 	--no-reorder-goals

 	--no-strong-flags

 	--preference

 	--profiling-detail

 	--program-prefix

 	--program-suffix

 	--reject-unconstrained-dependencies

 	--relocatable

 	--remote-repo-cache

 	--reorder-goals

 	--run-tests

 	--solver

 	--strong-flags

 	--verbose

 	--with-compiler

 	--with-hc-pkg

 	--world-file

 	--write-ghc-environment-files

 	allow-boot-library-installs

 	allow-newer

 	allow-older

 	benchmarks

 	build-summary

 	cabal-lib-version

 	compiler

 	configure-options

 	constraints

 	count-conflicts

 	coverage

 	debug-info

 	doc-index-file

 	documentation

 	executable-dynamic

 	executable-profiling

 	executable-static

 	executable-stripping

 	extra-framework-dirs

 	extra-include-dirs

 	extra-lib-dirs

 	extra-packages

 	extra-prog-path

 	fine-grained-conflicts

 	flags

 	haddock-all

 	haddock-benchmarks

 	haddock-contents-location

 	haddock-css

 	haddock-executables

 	haddock-hoogle

 	haddock-hscolour-css

 	haddock-html

 	haddock-html-location

 	haddock-hyperlink-source

 	haddock-internal

 	haddock-keep-temp-files

 	haddock-tests

 	http-transport

 	ignore-expiry

 	index-state

 	jobs

 	keep-going

 	library-coverage

 	library-for-ghci

 	library-profiling

 	library-profiling-detail

 	library-stripping

 	library-vanilla

 	local-repo

 	logs-dir

 	max-backjumps

 	minimize-conflict-set

 	optimization

 	optional-packages

 	packages

 	preferences

 	profiling

 	profiling-detail

 	program-prefix

 	program-suffix

 	reject-unconstrained-dependencies

 	relocatable

 	remote-repo-cache

 	reorder-goals

 	run-tests

 	shared

 	solver

 	split-objs

 	split-sections

 	static

 	strong-flags

 	tests

 	verbose

 	with-compiler

 	with-hc-pkg

 	world-file

 	write-ghc-environment-files

 	
 	
 cabal-lib-version

 	cabal project option

 	
 cabal-version

 	package.cabal field

 	
 category

 	package.cabal field

 	
 cc-options

 	package.cabal field

 	
 cmm-options

 	package.cabal field

 	
 cmm-sources

 	package.cabal field

 	
 command line option

 	--builddir=DIR

 	--project-file=FILE

 	--store-dir=DIR

 	
 common:common

 	package.cabal section

 	
 compiler

 	cabal project option

 	
 configure-options

 	cabal project option

 	
 constraints

 	cabal project option

 	
 copyright

 	package.cabal field

 	
 count-conflicts

 	cabal project option

 	
 coverage

 	cabal project option

 	
 cpp-options

 	package.cabal field

 	
 custom-setup:autogen-includes

 	package.cabal field

 	
 custom-setup:autogen-modules

 	package.cabal field

 	
 custom-setup:custom-setup

 	package.cabal section

 	
 custom-setup:setup-depends

 	package.cabal field

 	
 cxx-options

 	package.cabal field

 	
 cxx-sources

 	package.cabal field

D

 	
 	
 data-dir

 	package.cabal field

 	
 data-files

 	package.cabal field

 	
 debug-info

 	cabal project option

 	
 default-extensions

 	package.cabal field

 	
 	
 description

 	package.cabal field

 	
 doc-index-file

 	cabal project option

 	
 documentation

 	cabal project option

E

 	
 	
 environment variable

 	PATH

 	
 executable-dynamic

 	cabal project option

 	
 executable-profiling

 	cabal project option

 	
 executable-static

 	cabal project option

 	
 executable-stripping

 	cabal project option

 	
 executable:executable

 	package.cabal section

 	
 executable:main-is

 	package.cabal field

 	
 executable:scope

 	package.cabal field

 	
 extensions

 	package.cabal field

 	
 extra-bundled-libraries

 	package.cabal field

 	
 extra-doc-files

 	package.cabal field

 	
 	
 extra-framework-dirs

 	cabal project option

 	
 extra-frameworks-dirs

 	package.cabal field

 	
 extra-ghci-libraries

 	package.cabal field

 	
 extra-include-dirs

 	cabal project option

 	
 extra-lib-dirs

 	cabal project option

 	package.cabal field

 	
 extra-libraries

 	package.cabal field

 	
 extra-packages

 	cabal project option

 	
 extra-prog-path

 	cabal project option

 	
 extra-source-files

 	package.cabal field

 	
 extra-tmp-files

 	package.cabal field

F

 	
 	
 fine-grained-conflicts

 	cabal project option

 	
 flag:default

 	package.cabal field

 	
 flag:description

 	package.cabal field

 	
 flag:flag

 	package.cabal section

 	
 flag:manual

 	package.cabal field

 	
 flags

 	cabal project option

 	
 foreign-library:foreign-library

 	package.cabal section

 	
 	
 foreign-library:lib-version-info

 	package.cabal field

 	
 foreign-library:lib-version-linux

 	package.cabal field

 	
 foreign-library:mod-def-file

 	package.cabal field

 	
 foreign-library:options

 	package.cabal field

 	
 foreign-library:type

 	package.cabal field

 	
 frameworks

 	package.cabal field

G

 	
 	
 ghc-options

 	package.cabal field

 	
 ghc-prof-options

 	package.cabal field

 	
 ghc-shared-options

 	package.cabal field

 	
 	
 Give extra options to the benchmark executables.

 	setup-test command line option

 	
 Give extra options to the test executables.

 	setup-test command line option

H

 	
 	
 haddock-all

 	cabal project option

 	
 haddock-benchmarks

 	cabal project option

 	
 haddock-contents-location

 	cabal project option

 	
 haddock-css

 	cabal project option

 	
 haddock-executables

 	cabal project option

 	
 haddock-hoogle

 	cabal project option

 	
 haddock-hscolour-css

 	cabal project option

 	
 haddock-html

 	cabal project option

 	
 	
 haddock-html-location

 	cabal project option

 	
 haddock-hyperlink-source

 	cabal project option

 	
 haddock-internal

 	cabal project option

 	
 haddock-keep-temp-files

 	cabal project option

 	
 haddock-tests

 	cabal project option

 	
 homepage

 	package.cabal field

 	
 hs-source-dirs

 	package.cabal field

 	
 http-transport

 	cabal project option

I

 	
 	
 ignore-expiry

 	cabal project option

 	
 include-dirs

 	package.cabal field

 	
 includes

 	package.cabal field

 	
 	
 index-state

 	cabal project option

 	
 install-includes

 	package.cabal field

J

 	
 	
 jobs

 	cabal project option

 	
 	
 js-sources

 	package.cabal field

K

 	
 	
 keep-going

 	cabal project option

L

 	
 	
 ld-options

 	package.cabal field

 	
 library-coverage

 	cabal project option

 	
 library-for-ghci

 	cabal project option

 	
 library-profiling

 	cabal project option

 	
 library-profiling-detail

 	cabal project option

 	
 library-stripping

 	cabal project option

 	
 library-vanilla

 	cabal project option

 	
 library:exposed

 	package.cabal field

 	
 library:exposed-modules

 	package.cabal field

 	
 library:library

 	package.cabal section

 	
 	
 library:reexported-modules

 	package.cabal field

 	
 library:signatures

 	package.cabal field

 	
 library:virtual-modules

 	package.cabal field

 	
 library:visibility

 	package.cabal field

 	
 license

 	package.cabal field

 	
 license-file

 	package.cabal field

 	
 license-files

 	package.cabal field

 	
 local-repo

 	cabal project option

 	
 logs-dir

 	cabal project option

M

 	
 	
 maintainer

 	package.cabal field

 	
 max-backjumps

 	cabal project option

 	
 	
 minimize-conflict-set

 	cabal project option

 	
 mixins

 	package.cabal field

N

 	
 	
 name

 	package.cabal field

O

 	
 	
 optimization

 	cabal project option

 	
 optional-packages

 	cabal project option

 	
 	
 other-extensions

 	package.cabal field

 	
 other-modules

 	package.cabal field

P

 	
 	
 package-url

 	package.cabal field

 	
 package.cabal field

 	asm-options

 	asm-sources

 	author

 	benchmark:main-is

 	benchmark:type

 	bug-reports

 	build-depends

 	build-tool-depends

 	build-tools

 	build-type

 	buildable

 	c-sources

 	cabal-version

 	category

 	cc-options

 	cmm-options

 	cmm-sources

 	copyright

 	cpp-options

 	custom-setup:autogen-includes

 	custom-setup:autogen-modules

 	custom-setup:setup-depends

 	cxx-options

 	cxx-sources

 	data-dir

 	data-files

 	default-extensions

 	description

 	executable:main-is

 	executable:scope

 	extensions

 	extra-bundled-libraries

 	extra-doc-files

 	extra-frameworks-dirs

 	extra-ghci-libraries

 	extra-lib-dirs

 	extra-libraries

 	extra-source-files

 	extra-tmp-files

 	flag:default

 	flag:description

 	flag:manual

 	foreign-library:lib-version-info

 	foreign-library:lib-version-linux

 	foreign-library:mod-def-file

 	foreign-library:options

 	foreign-library:type

 	frameworks

 	ghc-options

 	ghc-prof-options

 	ghc-shared-options

 	homepage

 	hs-source-dirs

 	include-dirs

 	includes

 	install-includes

 	js-sources

 	ld-options

 	library:exposed

 	library:exposed-modules

 	library:reexported-modules

 	library:signatures

 	library:virtual-modules

 	library:visibility

 	license

 	license-file

 	license-files

 	maintainer

 	mixins

 	name

 	other-extensions

 	other-modules

 	package-url

 	pkgconfig-depends

 	source-repository:branch

 	source-repository:location

 	source-repository:module

 	source-repository:subdir

 	source-repository:tag

 	source-repository:type

 	stability

 	synopsis

 	test-suite:main-is

 	test-suite:test-module

 	test-suite:type

 	tested-with

 	version

 	
 	
 package.cabal section

 	benchmark:benchmark

 	common:common

 	custom-setup:custom-setup

 	executable:executable

 	flag:flag

 	foreign-library:foreign-library

 	library:library

 	source-repository:source-repository

 	test-suite:test-suite

 	
 packages

 	cabal project option

 	PATH

 	
 pkgconfig-depends

 	package.cabal field

 	
 preferences

 	cabal project option

 	
 profiling

 	cabal project option

 	
 profiling-detail

 	cabal project option

 	
 program-prefix

 	cabal project option

 	
 program-suffix

 	cabal project option

R

 	
 	
 reject-unconstrained-dependencies

 	cabal project option

 	
 relocatable

 	cabal project option

 	
 remote-repo-cache

 	cabal project option

 	
 	
 reorder-goals

 	cabal project option

 	
 run-tests

 	cabal project option

S

 	
 	
 setup command line option

 	--help, -h or -?

 	--verbose=n or -v n

 	
 setup-build command line option

 	--prog-options=options, --prog-option=option

 	
 setup-clean command line option

 	--save-configure, -s

 	
 setup-configure command line option

 	--allow-newer[=pkgs], --allow-older[=pkgs]

 	--bindir=dir

 	--cid=cid

 	--configure-option=str

 	--constraint=constraint

 	--datadir=dir

 	--datasubdir=dir

 	--default-user-config=file

 	--dependency[=pkgname=ipid]

 	--disable-coverage

 	--disable-executable-dynamic

 	--disable-executable-static

 	--disable-executable-stripping

 	--disable-library-for-ghci

 	--disable-library-profiling

 	--disable-library-vanilla

 	--disable-optimization

 	--disable-profiling

 	--disable-response-files

 	--disable-shared

 	--disable-split-objs

 	--disable-static

 	--disable-tests

 	--docdir=dir

 	--dynlibdir=dir

 	--enable-coverage

 	--enable-executable-dynamic

 	--enable-executable-static

 	--enable-executable-stripping

 	--enable-library-for-ghci

 	--enable-library-profiling or -p

 	--enable-library-vanilla

 	--enable-optimization[=n] or -O [n]

 	--enable-profiling

 	--enable-shared

 	--enable-split-objs

 	--enable-static

 	--enable-tests

 	--exact-configuration

 	--extra-framework-dirs[=dir]

 	--extra-include-dirs[=dir]

 	--extra-lib-dirs[=dir]

 	--flags=flagspecs

 	--ghc or -g, --jhc, --lhc, --uhc

 	--global

 	--htmldir=dir

 	--ipid=ipid

 	--libdir=dir

 	--libexecdir=dir

 	--libexecsubdir=dir

 	--library-profiling-detail[=level]

 	--libsubdir=dir

 	--package-db=db

 	--preference=preference

 	--prefix=dir

 	--profiling-detail[=level]

 	--prog-option=option

 	--prog-options=options

 	--program-prefix=prefix

 	--program-suffix=suffix

 	--sysconfdir=dir

 	--user

 	--with-compiler=path or -w *path*

 	--with-hc-pkg=path

 	--with-prog=path

 	-f flagname or -f -flagname

 	
 	
 setup-copy command line option

 	--destdir=path

 	
 setup-haddock command line option

 	--css=path

 	--executables

 	--hoogle

 	--hscolour-css=path

 	--html-location=url

 	--hyperlink-source

 	--internal

 	
 setup-hscolour command line option

 	--css=path

 	--executables

 	
 setup-install command line option

 	--global

 	--user

 	
 setup-register command line option

 	--gen-pkg-config[=path]

 	--gen-script

 	--global

 	--inplace

 	--user

 	
 setup-sdist command line option

 	--snapshot

 	
 setup-test command line option

 	--benchmark-option=option

 	--benchmark-options=options

 	--builddir=dir

 	--human-log=path

 	--machine-log=path

 	--show-details=filter

 	--test-option=option

 	--test-options=options

 	--test-wrapper=path

 	Give extra options to the benchmark executables.

 	Give extra options to the test executables.

 	
 setup-unregister command line option

 	--gen-script

 	--global

 	--user

 	
 shared

 	cabal project option

 	
 solver

 	cabal project option

 	
 source-repository:branch

 	package.cabal field

 	
 source-repository:location

 	package.cabal field

 	
 source-repository:module

 	package.cabal field

 	
 source-repository:source-repository

 	package.cabal section

 	
 source-repository:subdir

 	package.cabal field

 	
 source-repository:tag

 	package.cabal field

 	
 source-repository:type

 	package.cabal field

 	
 split-objs

 	cabal project option

 	
 split-sections

 	cabal project option

 	
 stability

 	package.cabal field

 	
 static

 	cabal project option

 	
 strong-flags

 	cabal project option

 	
 synopsis

 	package.cabal field

T

 	
 	
 test-suite:main-is

 	package.cabal field

 	
 test-suite:test-module

 	package.cabal field

 	
 test-suite:test-suite

 	package.cabal section

 	
 	
 test-suite:type

 	package.cabal field

 	
 tested-with

 	package.cabal field

 	
 tests

 	cabal project option

V

 	
 	
 verbose

 	cabal project option

 	
 	
 version

 	package.cabal field

W

 	
 	
 with-compiler

 	cabal project option

 	
 with-hc-pkg

 	cabal project option

 	
 	
 world-file

 	cabal project option

 	
 write-ghc-environment-files

 	cabal project option

 _static/comment-bright.png

_static/Cabal-dark.png
2 Cabal

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to the Cabal User Guide

 		
 Introduction

 		
 A tool for working with packages

 		
 What’s in a package

 		
 Cabal featureset

 		
 Similar systems

 		
 Configuration and Installing Packages

 		
 Configuration

 		
 Overview

 		
 Repository specification

 		
 Building and installing packages

 		
 Building and installing a system package

 		
 Building and installing a user package

 		
 Installing packages from Hackage

 		
 Developing with sandboxes

 		
 Creating a binary package

 		
 setup configure

 		
 setup build

 		
 setup haddock

 		
 setup hscolour

 		
 setup install

 		
 setup copy

 		
 setup register

 		
 setup unregister

 		
 setup clean

 		
 setup test

 		
 setup bench

 		
 setup sdist

 		
 Package Concepts and Development

 		
 Quickstart

 		
 Using “cabal init”

 		
 Editing the .cabal file

 		
 Modules included in the package

 		
 Modules imported from other packages

 		
 Building the package

 		
 Next steps

 		
 Package concepts

 		
 The point of packages

 		
 Package names and versions

 		
 Kinds of package: Cabal vs GHC vs system

 		
 Unit of distribution

 		
 Explicit dependencies and automatic package management

 		
 Portability

 		
 Developing packages

 		
 Creating a package

 		
 Package descriptions

 		
 Custom setup scripts

 		
 Autogenerated modules and includes

 		
 Accessing data files from package code

 		
 System-dependent parameters

 		
 Conditional compilation

 		
 More complex packages

 		
 Reporting Bugs and Stability of Cabal Interfaces

 		
 Reporting bugs and deficiencies

 		
 Stability of Cabal interfaces

 		
 Cabal file format

 		
 Command-line interface

 		
 Functions and Types

 		
 Hackage

 		
 Nix-style Local Builds

 		
 Quickstart

 		
 Developing multiple packages

 		
 Cookbook

 		
 How can I profile my library/application?

 		
 How it works

 		
 Local versus external packages

 		
 Where are my build products?

 		
 Caching

 		
 Commands

 		
 cabal v2-configure

 		
 cabal v2-update

 		
 cabal v2-build

 		
 cabal v2-repl

 		
 cabal v2-run

 		
 cabal v2-freeze

 		
 cabal v2-bench

 		
 cabal v2-test

 		
 cabal v2-haddock

 		
 cabal v2-exec

 		
 cabal v2-install

 		
 cabal v2-clean

 		
 cabal v2-sdist

 		
 Configuring builds with cabal.project

 		
 Specifying the local packages

 		
 Global configuration options

 		
 Solver configuration options

 		
 Package configuration options

 		
 Advanced global configuration options

 		
 Nix Integration

 		
 Enabling Nix Integration

 		
 Creating Nix Expressions

 		
 Nix Expression Evaluation

 		
 Further Reading

 		
 Package Description Format Specification History

 		
 cabal-version: 3.0

 		
 cabal-version: 2.4

 		
 cabal-version: 2.2

 		
 cabal-version: 2.0

 		
 cabal-version: 1.24

 		
 cabal-version: 1.22

 		
 cabal-version: 1.20

 		
 cabal-version: 1.18

 		
 cabal-version: 1.16

 		
 cabal-version: 1.12

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

